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Abstract- Location Awareness is key capability of 
Context-Aware Ubiquitous environments. Received 
Signal Strength (RSS) based localization is increasingly 
popular choice especially for in-building scenarios after 
pervasive adoption of IEEE 802.11 Wireless LAN. 
Fundamental requirement of such localization systems is 
to estimate location from RSS at a particular location. 
Multipath propagation effects make RSS to fluctuate in 
unpredictable manner, introducing uncertainty in 
location estimation. Moreover, in real life situations RSS 
values are not available at some locations all the time 
making the problem more difficult. We employ Modular 
Multi Layer Perceptron (MMLP) approach to effectively 
reduce the uncertainty in location estimation system. It 
provides better location estimation results than other 
approaches and systematically caters for unavailable 
signals at estimation time. 
 
Key Words: Artificial Neural Networks, Pattern 
Recognition, Location Aware Computing  

I. INTRODUCTION 

Location information is an integral and crucial 
component of ubiquitous computing applications [1] [2] 
[3] [4] [5] [7]. In building localization has been subject to 
costly infrastructure and special hardware devices 
mounted on the objects of interest [17]. Pervasive 
adoption of IEEE802.11 (a, b, g) Wireless LAN (WiFi) 
has increased the potential of Location-Awareness 
technology to become a common service. Since signal 
strength measurements must be reported by the wireless 
network interface card as part of standard compliance, 
Positioning using Wireless LAN received signal strength 
(RSS) is both feasible and economical. 
WiFi RSS based location awareness applications include, 
but are not limited to, a wide range of services to the 
end user like automatic call forwarding to user’s location, 
robotic global localization, exploration and navigation 
tasks, Finder, Guiding and Escorting systems, first hop 
communication partners, liaison applications, location 
based advertisement and positioning of entities in large 
warehouses. We are developing Location awareness 
capability for ubiquitous computing middleware 
CAMUS [14]. We define Location Awareness system 
development life cycle as having three distinct phases; 

Calibration phase, Training phase an Estimation phase. 
Basic concept behind WiFi RSS based location 
awareness is that received signal strengths, from 
different Access Points (APs), follow certain patterns, so 
called fingerprints,  at a particular location. These 
patterns are captured at each location and stored in a 
database namely “Radio Map”. Let  l  be the set of 
target locations and s signal strength patterns. Let  

iA set of access points where i indexes over set of APs 

visible at particular location l .  Calibration phase 
captures this information and stores observation vectors 

lAso i ,,=  in Radio Map data store. Result of 
calibration phase is a mapping function represented 
as )(sfl = . Later when some device reports the same 
pattern, it is matched with previously captured patterns 
and location of that device can be estimated. Process of 
capturing the RSS at particular locations in a site is called 
‘site calibration’. Fig 1 shows the methodology of 
calibration process. 
 

 
Fig 1: Site calibration: basic concept 

Once a Radio Map is built, it is used to develop a 
mapping function between target locations and 
respective RSS values. This function is later employed to 
estimate location of a device given RSS values.  
IEEE 802.11 (a and b, g) standards complying WLAN 
operates in two publicly available radio frequency 
spectrums, 5 and 2.4 Mhz respectively. In building radio 
wave propagation follows a complex model due to Non 
Line of Sight (NLOS) multi-path effects because of the 
building geometry, human body absorption, neighboring 
devices and dynamic nature of environments. Due to 
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these limitations, in building location estimation 
becomes a complex problem difficult to be engineered 
using classical mathematical methods. Neural networks 
provide massive parallelism, fault tolerance and 
adaptation to changing circumstances. Previously we 
implemented a neural network based localization system 
on small scale, 300 square meters, with three access 
points [19]. With encouraging results we extended our 
problem scale to 1240 square meter building involving 8 
access points for implementing localization.  In this 
paper we present our extended experiments to develop 
artificial neural networks based location estimation 
system. Next section provides an overview of the 
previous work. In section III, our Modular Multi Layer 
Perceptron approach is presented. Section IV describes 
Design and Implementation details of the system. 
Results of experiments are presented in section V.  

II. RELATED WORK 
There have been several efforts to develop Location 
Aware system based on RSS. Bayesian classification and 
filtering [4] [8], Statistical learning theory [6], K-Nearest 
Neighbors [1][2][9], GPS like triangulation [18] and 
Kalman Filtering [10] have been employed for solving 
this problem. Indoor wireless signal propagation is so 
complicated and elusive that it is still hard to achieve and 
maintain reasonable accuracy level for indoor location 
estimation systems. Nearest Neighbors based pattern 
recognition technique and its derivates have been used 
traditionally by many researchers. RADAR system 
reported 2.65 square meter distance error. K. Pehlavan et 
al also used KNN technique and achieved 2.8 meter 
distance error [9]. Nearest Neighbor and its variants 
require a database of sample RSS readings at the 
estimation time for pattern matching. As the area and 
number of target locations grow, this size of the 
database dramatically increased and it becomes 
impractical to achieve sufficient scalability. On the other 
hand GPS like triangulation methods provide poor 
performance due to multi-path propagation effects in 
indoor environments. Asim et al [18] achieved accuracy 
with 4.5 meter distance error in an area of 60 square 
meters. Probabilistic approaches like Bayesian networks 
based solutions achieve better performance but they are 
computationally exhaustive and difficult to scale. 
Andrew et al reported 1.5 square meter distance error 
but only for 30 square meter area test bed. As the area 
and number of target locations and wireless access 
points increase, the computational complexity of 
Bayesian structures grows and become computationally 
hard. Only Battiti et al [11] have employed neural 
networks for this problem. They used feed forward back 
propagation network that takes RSS of 3 Wireless 

Access Points (AP) to cover 624 square meter area. 200 
samples were used to train neural network for each 
target location. They reported median estimation 
distance error of 1.75 meter. This model assumes that all 
the inputs are available at every location all the time. 
Practically, this approach has limited applicability 
because in real life scenario some AP may not be visible 
(not in range) at all the locations for all the time. We 
employ a modular approach that perfectly caters for this 
situation.  

III. OUR APPROACH 

Contrary to previous approaches, we provide 
architectural support for unavailability of signals at 
estimation time. The problem of constantly fluctuating 
RSS and even absence of wireless signal introduces 
uncertainty in location estimation. Radio map based 
localization is directly affected by the fact that how 
closely sample signal data represent the real life radio 
signal propagation. We managed to collect a 100 RSS 
samples at each target location at 42 target locations 
(Refer to section IV). Multi Layer Perceptron (MLP) has 
been employed by many researches for pattern 
recognition problem [6] [7]. But same approach is not 
sufficed to our problem due to unpredictable absence of 
signal in real life. For empirical data collection an Hp 
iPAQ pocket PC equipped with integrated Intel wireless 
network interface card was used to build the radio map 
of the environment. IEEE 802.11 (a, b, g) standard 
specifies that signal strength measurement must be 
reported by the network interface card (NIC) as part of 
standard compliance [15]. The RSSI is measured in dBm 
and normal values for the RSSI value are between -10 
and -100 [16].We propose a modular approach to cope 
with this uncertainty effectively. Details of our 
architecture are given in next section.   

A. Modular Multi Layer Perceptron (MMLP) 

Fundamental assumption of radio map based 
localization is that signal strength of all access points in 
the target area is available all the time. This assumption 
does not cater for a subtle nature of radio wave 
propagation specially inside the buildings e.g. all access 
points are not visible at all target locations all the time. 
This implies that non-availability of a particular access 
point at given location can have adverse affect on 
location estimation. We refer to signal availability of a 
particular access point at a given location as ‘visibility’.  
Fig 2 shows radar graphs for visibility ratio of individual 
six access point at 42 target locations. All target locations 
IDs are listed around the graph and visibility of each 
access point is shown as line connecting these points. 
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We use last four digits of access point’s MAC (Media 
Access Control) address in order to identify each AP. 
Figure 2 shows visibility graphs of 6 access points in our 
target area. 
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Fig 2: Visibility ratio of individual access point at different locations 

We summarize this information in a visibility matrix table as 
shown in Table 1. 

TABLE 1. Visibility Matrix 

Access Points  Location IDs  
AP7195,AP5823,AP9235; 19,16,17,18,20,24,25,26,34,35; 

AP7195,AP9235,AP5659; 
13,17,18,21,22,27,29,31,32,12,14,15,16,19, 
20,23,24,25,26,28,30,33,34; 

AP7195,AP9239,AP9235; 12,10,13,14,16,28; 
AP5823,AP5535,AP8195; 37,19,20,35,36,38,39,40,42; 

A close observation of radio map gives important clues 
for using MMLP. Visibility of a signal allows filtering out 
possibility of unlikely locations and vice versa. Therefore 
for each set of available signal we employ a separate 
MLP neural network with best results. The overall 
architecture includes a rule based component at the 

beginning of estimation. All the Access Points (AP) in 
range at a particular location are presented to this 
module. Based on this input it selects the next 
appropriate Neural Network Module.  The criterion of 
selection is visibility (Accessibility) of AP at a particular 
location. For our experimental setup this selection 
criteria is summarized in Table 2.  

TABLE 2. Visibility Matrix Decision Rules 

AP 
5535

AP 
8195

AP 
9239 

AP 
5659 

AP 
7195 

AP 
5823 

AP 
9235 

Module 

0 0 0 0 1 1 1 A 
0 0 0 1 1 0 1 B 
1 1 0 0 0 1 0 C 
0 0 1 0 1 0 1 D 

 
In table 2, value 1 stands for signal availability and 0 for 
non availability. Four neural networks, with RSS of 
different APs on the input layer, are employed to 
estimate the location. Modular Multi Layer Perceptron 
architecture is shown in Fig 3. Our experiments were 
conducted with many different variants of MMLP 
architecture. Fig 2 is a particular instance of MMLP only 
to convey the basic idea.  
 

 
Fig 3: Modular Multi Layer Perceptron (MMLP) Architecture 

IV. DESIGN AND IMPLEMENTATION  

We conducted experiments in 3rd floor of Engineering 
Building. Fig 4 shows the map, target locations and 
location of wireless Access Points. We divided all target 
locations into three regions. Corridor 1 is horizontal 
corridor with 10 target points. All point in corridor 1 
region are given IDs from 11~20 from right to left. 
Corridor 2 is right vertical corridor with 6 target points. 
All points in corridor 2 region are numbered as 21~26. 
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Similarly Corridor 3 is left vertical corridor with 6 target 
points. All points in corridor 3 region are numbered as 
31~36. Two corner locations are termed as zero points 
as shown in Fig 3. Total area covered by these points is 
286 square meter. 

A. Calibration Phase 

We collected 300 samples of RSS from all three Access 
Points at each location in calibration phase.  Three 
IEEE802.11 (a, b, g) 3COM Access Points have been 
deployed in three corridors, as shown in Fig 4. We 
developed a device driver interface to capture the signal 
strength based on NDIS specification. NDIS protocol 
driver acts as a "relay" between an application and the 
NDIS miniport driver. Signal strengths recorded at each 
location are stored in a database called “Radio Map”. 
Later this radio map is used to provide training samples 
for different neural network modules. 
 

 
Fig 4: Location Map, Target Locations  

Graph shown in Fig 5 is made of a subset of the radio 
map. Location IDs are listed on x-axis and RSS values 
on y-axis.  
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Fig 5: Points where all APs are accessible 

Appendix A graph shows some locations where signal of 
only a subset of access points can be received. Purpose 

of presenting radio map here is to emphasize the 
incompleteness and dynamic nature of RSS data at 
different locations. Moreover, Device at two different 
locations can sometimes report same RSS readings, and 
can report very different readings while at the same 
location. This dilemma is main obstacle for getting 
absolute correct performance with the techniques 
mentioned in section 2.  

B. Training Phase 

Training phase is used to train different neural networks 
and analyze their comparative performance. Fig 6 shows 
system components that are involved in training phase. 
 

 
Fig 6: Neural Network Training System 

Radio Map generated in Calibration phase is not used 
exactly. During calibration we observe certain RSS 
behaviors and apply statistical learning techniques to 
characterize signal strength properties at a particular 
location. Based on those characteristics, we implemented 
smoothing filters to remove outliers from RSS patterns. 
Fig 7 shows spikes (outliers) in received signal strength 
observations in real life. Such spikes have very little 
influence over learning and estimation of location 
because they appear for very shot time. In order to filter 
out such timely non-regular patterns from training data, 
we propose a histogram technique. This technique 
provides mapping that counts the number of 
observations that fall into various disjoint categories 
(bins), Let N denote the total number of observations 
and n be the total number of bins, the histogram is 
defined as:  

1

n

k
k

N f
=

=∑  

Where kf is the frequency of occurrence of the RSS 
value in the k th bin. Let the variable r denote the RSS 
value. Then, maxr is defined as the largest RSS value such 
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that all RSS values less than it have zero minr is defined 
similarly. The size of the bins, b , is then defined as: 

max minr r
b

σ
−

=  

Where σ is the standard deviation of RSS values at a 
given location. Next we define a threshold frequency 
thresf such that all frequencies below this frequency are 

assigned zero values. We then have a new set of 
frequencies { }|i i thresf f f≥ of size m n≤ , with the 
corresponding bins denoted by ib .  
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Fig 7: Spikes in RSS Graph 

After this we perform normalization on this new set of 
bins and get the normalized bin values. Next component 
normalizes the data and targets by scaling. After 
normalization some RSS values become too small to be 
effective in neural network learning. Such values are 
filtered by NaN (Not a Number) filter component. Then 
training sets are presented to neural network for binding 
of the patterns of RSS with respective Location IDs by 
learning. After learning is complete, data post processing 
component converts results back into un-normalized 
vectors. Regression analysis component is implemented 
to analyze the results. All neural network modules take 
received signal strengths of visible access points as input 
and generate location id as output. We employed several 
configurations for finding the best location estimation 
accuracy. It is observed that choice of transfer functions; 
number of neurons at hidden layers and training 
algorithm affect the training error.  Combination of log-
sigmoid transfer function at hidden layer neurons and 
tan-sigmoid at output neuron were found to be 
producing comparatively good results. Summarization of 
different training configurations is given in table 3. 

TABLE 3 Training Performance of different Configurations 

Algori Perfor Goal Epoc- Struc Transfer Func 

thm mance hs 
 

ture 
 

Hidden 
Layer 

Output 
Layer 

RP* 0.01338 0.01 10000 381 Tan Lin 
SCG† 0.01371 0.01 10000 381 Tan Lin 
CGB‡ 0.01599 0.01 3000 381 Tan Lin 

LM§ 0.01328 0.01 1000 381 Tan Lin 
LM 0.01080 0.01 5000 381 Log Lin 
LM 0.00999 0.01 398 3881 Log Lin 

LM 0.00866 0.001 5000 3881 Log Lin 
LM 0.00866 0.0001 3700 3881 Log Tan 

As shown in table 3, different configurations for feed-
forward back-propagation neural networks were 
considered; e.g. training properties in terms of error goal, 
performance and required epochs, neural network 
structure, training algorithms and transfer functions are 
listed. All of the employed training algorithms use 
gradient of the performance function to adjust the 
weights. The gradient is determined using a technique 
called back-propagation, which involves performing 
computations backwards through the network. The 
back-propagation computation is derived using the chain 
rule of calculus and is described in Chapter 11 of [7]. 
Four training algorithms were chosen based upon 
literature review on supervised learning for pattern 
recognition with feed forward back propagation neural 
networks. In order to avoid over fitting problem of 
neural networks early stopping method was used. Mean 
Square Error (MSE) performance function was 
employed to measure the network errors. We performed 
our experiments using MATLAB neural network tool 
box [18]. As Table 3 suggests, Levenberg-Marquardt 
algorithm performed best in terms of faster pattern 
learning and goal achievement.  

C. Estimation Phase 

After training phase live data from the environment 
need to be tested with trained neural networks. In 
estimation phase RSS captured on mobile device is 
presented to the input layer of neural network. After the 
number of accessible AP is determined, different 
preprocessing components are implemented to filter, 
scale and normalize data. Fig 8 shows all the 
components involved in execution phase. 
Outliers filter component is implemented to remove 
spikes from RSS data at run time. Normalization 
component is responsible to scale the inputs in a given 
range. Once normalized, RSS readings are presented to 

                                                
* Resilient Propagation 
† Scaled Conjugate Gradient 
‡ CGB: Conjugant Gradient Powell/Beale Restarts 
§ LM: Levenberg-Marquardt 
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the appropriate Neural Network module. Out put of 
neural network is post processed (De-normalized) to get 
the Location ID estimate. In next section we shall 
present performance some results. 
 
 

 
Fig 8: Execution of Location Estimation System 

V. EXPERIMENTAL RESULTS  

Results are presented as estimation error in terms of 
meters. We employ Manhattan distance between 
estimated and actual location to represent error. 

 

TABLE 4: Execution Performance of different Network 
configurations 

Transfer Func Error (Meter) Struc
ture Hidden 

Layer 
Output 
Layer 

Trai
ning 
Algo 

Max 
Error 

Avg 
Error 

Median 
Error 

381 Tansig Linear CGF 1.9884 0.3501 0.143 
381 Tansig Linear RP 1.8392 0.2863 0.1114 
381 Tansig Linear SCG 1.5867 0.2740 0.0713 
381 Tansig Linear LM 1.6263 0.2833 0.1001 
381 Logsig Linear LM 1.8311 0.1724 0.008 
3881 Logsig Linear LM 2.1667 0.1258 0 
3881 Logsig Tan LM 2.1667 0.1258 0 

 
Table 4 summarizes all the network configurations that 
we tested for one module (with no missing inputs). 3881 
architecture with Levenberg-Marquardt Algorithm 
training algorithm produced best average performance 
with 0.1258 meter error in estimation. But this network 
produced the maximum error of 2.1667 meters at the 
same time.  
 In order to analyze the performance of location 
estimation system, it is needed to employ a 
comprehensive model that can balance the performance 
measure among all aspects of accuracy. We applied a 
comprehensive model for evaluation of location 
estimation techniques. It covers the all performance 
aspects. This evaluation model provides both qualitative 
and quantitative insight into performance of location 
estimation system.  

Fig 9, 10, 11 and 12 show the error in estimation at 
every target location of the site. On x-axis of each graph, 
test patterns are listed and on y-axis location ID and 
estimation is plotted as a line graph. This shows location 
specific performance of different networks. It is obvious 
from these graphs that location estimation error is 
divided in two aspects i) over all error in the area ii) 
location specific error. Although Module B produces 
highest error at one location still it provides best 
accuracy in overall aspect. This fact is obvious when a 
closer observation is made on to the location specific 
results of each candidate neural network.  
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Fig 9: Estimation Accuracy graph of Module A 
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Fig 10: Estimation Accuracy graph of Module B 
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Fig 11: Estimation Accuracy graph of Module C 
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Fig 12: Estimation Accuracy graph of Module D. 

VI. CONCLUSION AND FUTURE DIRECTIONS 

Employing IEEE 802.11(a, b, g) Wireless LAN as 
infrastructure for indoor Location Awareness is prudent 
choice due to its low cost and pervasive coverage. Since 
all Wireless Network Interface Cards have to report 
Received Signal Strength as dBm, it is very practical to 
implement localization capability based on RSS values at 
a particular location. We employed a novel Modular 
Multilayer Perceptron architecture for Wireless LAN 
RSS based location estimation. This architecture 
provides robust mechanism for coping with unavailable 
information in real life situations. Experimental 
prototype was implemented for Engineering Building 3rd 
floor. We evaluate our location estimation system 
performance with both overall and location specific 
measures.  Results show superior performance to 
previous approaches. Moreover our system does not 
require runtime searching of nearest neighbors in huge 
backend radio map database, as is the approach in 
previous work. This results in significant performance 
improvement and saves resources. In order to make this 
system available on demand for mobile end users, it is 
required to implement it as a software component. In 

future we plan to provide this system as a middleware 
service as explained in [12] [13].  
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