
K. Aberer et al. (Eds.): WISE 2006, LNCS 4255, pp. 375 – 386, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Finding Reliable Recommendations for Trust Model

Weiwei Yuan, Donghai Guan, Sungyoung Lee, Youngkoo Lee*, and Andrey Gavrilov

Department of Computer Engineering, Kyung Hee University, Korea
{weiwei, donghai, sylee, avg}@oslab.khu.ac.kr, yklee@khu.ac.kr

Abstract. This paper presents a novel context-based approach to find reliable
recommendations for trust model in ubiquitous environments. Context is used
in our approach to analyze the user’s activity, state and intention. Incremental
learning based neural network is used to dispose the context in order to detect
doubtful recommendations. This approach has distinct advantages when dealing
with randomly given irresponsible recommendations, individual unfair
recommendations as well as unfair recommendations flooding regardless of
from recommenders who always give malicious recommendations or “inside
job” (recommenders who acted honest previous suddenly give unfair
recommendations), which is lack of consideration in the previous works. The
incremental learning based neural network used in our approach also enables to
filter out the unfair recommendations with limited information about the
recommenders. Our simulation results show that our approach can effectively
find reliable recommendations in different scenarios and a comparison is also
given between previous works and our method.

1 Introduction

Computational models of trust have been proposed for ubiquitous environments
because they are capable of deciding on the runtime whether to provide services to
requesters who are either unfamiliar with service providers or do not have enough
access rights to certain services. The basis for the trust model to make decision for
unfamiliar service requesters are the recommendations given by recommenders who
have past interaction history with the requesters. However, in the large-scale, open,
dynamic and distributed ubiquitous environments, there may possibly exist numerous
self-interested recommenders who give unfair recommendations to maximize their
own gains (perhaps at the cost of others). Since recommendations given by
recommenders are the key point for the trust model to make decision, finding ways to
avoid or reduce the influence of unfair positive or negative recommendations from
self-interested recommenders is a fundamental problem for trust model in ubiquitous
environments. At the same time, because of the highly dynamic nature of ubiquitous
environments, it is not always easy to get enough information about the
recommenders. Hence the trust model is required to find the reliable
recommendations with limited information about the recommenders.

* Corresponding author.

376 W. Yuan et al.

The objective of this paper is to contribute to an approach which can find the
reliable recommendations for the trust model in ubiquitous environments. This paper
sets the stage by identifying a novel context-based approach using incremental
learning algorithm. Context is used in our approach to analyze the user’s activity,
state and intention. The learning of context is incrementally increased by a Cascade-
Correlation architecture neural network. By analyzing the context under which the
recommendation was given, our method is able to filter out unfair recommendations
in different scenarios. The advantages of our proposed approach are: (1) it can filter
out randomly given irresponsible recommendations, individual unfair
recommendations as well as unfair recommendations flooding no matter the
recommendations are from recidivist (recommenders who always give malicious
recommendations) or inside job (recommenders who acted honest suddenly give
unfair recommendation on the benefit of themselves), (2) it can differentiate doubtful
recommendations due to different reasons: the changing behaviors of service
requesters in front of different recommenders, the incorrect observations by
recommenders, as well as malicious intention of recommenders, (3) it is able to detect
the malicious recommendations when limited information is available for the
recommenders which is usually the case in a real scenario.

The rest of the paper is organized as follows. Section 2 gives the recommendation
scenarios in ubiquitous environments. Section 3 gives our proposed approach in
details. Section 4 gives the simulation results. Section 5 shows the comparison
between our approach and previous works. The last section concludes the paper and
points out the future work.

2 Recommendation Scenarios in Ubiquitous Environments

For the trust model in ubiquitous environments, the possible scenarios for the
recommendations given by recommenders are as follows:

(1) Normal Recommendations.
a. Honest recommenders give accurate recommendations.
(2) Abnormal Recommendations.
b. Honest recommenders give inaccurate recommendations due to their incorrect

observation.
c. Due to the changing behavior of service requester in front of different

recommenders, honest recommenders give exceptional recommendations compared
with recommendations given by other recommenders.

d. Recommenders give random recommendations at ease due to the lack of
responsibility.

(3) Malicious Recommendations.
e. Recommenders who acted honest give unfair high or low recommendations

individually. The past behaviors of these recommenders were always honest.
However, they suddenly give unfair recommendations due to the relationship with the
service requester or their own benefits. (Called Inside Job)

f. Recommenders who acted malicious give unfair high or low recommendations
individually. Different from the recommenders in scenario e, these recommenders
always give malicious recommendations in the past.

 Finding Reliable Recommendations for Trust Model 377

g. A number of recommenders who acted honest collude to give unfair
recommendations (more than 50% of total recommendations), which causes the
flooding of unfair recommendations. (Called Inside Job Flooding)

h. Unfair recommendations flooding similar as scenario g, but caused by
recommenders whose past behaviors were always malicious.

A reliable trust model in ubiquitous environments should have the ability to filter
out the recommendations in scenario b, d, e, f, g and scenario h, distinguish
recommendations in scenario b and scenario d from recommendations in scenarios a,
and differentiate scenario c apart from scenario b, d, e and scenario f.

3 The Proposed Approach

Trust is subjective since it is based on each user’s own understanding of information.
Hence it is relatively easy for the malicious recommender to pretend honest and for
the honest recommender to be misunderstood as malicious, which makes it difficult to
differentiate between the unfair and fair recommendations. Our key idea for the
solution is that: different recommenders may give different recommendations due to
their different understandings on the same information, however, from the view of
psychology, one recommender will follow his own rule on recommendation giving,
i.e., one recommender usually gives similar recommendations in similar context. In
case one recommender gives exceptional recommendations compared with his
previous ones in similar context, the reason lies in two aspects. One reason is that this
exceptional recommendation is a malicious recommendation and should be filtered
out. The other reason is that the recommender’s rule on recommendation giving has
changed, e.g. due the environments’ effect on him, one recommender now only gives
positive recommendation to the service requester whose past interaction with him are
more than 80% successful in stead of 60%. In this case, our architecture will use
incremental learning algorithm to catch up the recommender’s new rule.

Table 1. Context used in our approach

ID AB. Context Example
1 NA User Name Weiwei
2 RE Relationship with other agents Senior member
3 TD Time/date of request Weekday/daytime
4 CS Current state Busy working
5 PI Past interaction history with service requester 57% successful
6 TL Time of last communication Within 3 days
7 CF Confidence for the service requester in given

time window
Number of total
Communication is 27

To learn each recommender’s rule on recommendation giving, we use incremental
learning based neural network to learn the recommendations as well as the context
under which the recommendations were given by the recommenders. The reason we
use incremental learning is that the acquisition of a representative training data for the
rule is time consuming and the rule is also possible to dynamically change from time
to time. Consequently, it is not uncommon for such data to become available in small

378 W. Yuan et al.

batches over a period of time. In such setting, it is necessary to update an existing
classifier in an incremental fashion to accommodate new data without compromising
classification performance on old data [1]. The context which may relate to the
learning of the rule is shown in Table1. Attributes 1, 3 and 4 of the context are
specifically bounded to the recommender’s activity or state, and the other attributes
are supposed to hold regardless of the recommender’s state since it depends on
relationship of the external world where the recommender is currently situated.

We use the following architecture (shown in Fig.1.) to filter out the unfair
recommendations.

Fig. 1. Architecture Used for Filtering out Unfair Recommendations

Step 1: Recommendation Manager collects recommendations (orgREC) from all the

recommenders, along with the context value [, , , , , ,]contextV NA RE TD CS PI TL CF

under which recommendations were given by each recommender, where NA, RE, TD,
CS, PI, TL, CF represent the context attributes mentioned in Table 1 from (1) to (7)
respectively.

1
0org

trusted
REC

untrusted

⎧⎪
⎨
⎪⎩

=

Step 2: We use this step to find the doubtful recommendations from those gotten by
step 1. To achieve this, we use incremental learning neural network, in particular, the
Cascade-Correlation architecture.

 Finding Reliable Recommendations for Trust Model 379

Cascade-Correlation is useful for incremental learning, in which new information is
added to an already-trained network. It is an architecture of neural network which
begins with minimal network, then automatically trains and adds new hidden units
one by one, creating a multi-layer structure. Once a new hidden unit has been added
to the network, its input-side weights are frozen. This unit then becomes a permanent
feature-detector in the network, available for producing outputs or for creating other,
more complex feature detector [2]. Fig.2 gives the process of training Cascade-
Correlation. In 1, we train the weights from input to output. In 2, we add a candidate
unit and train its weights to maximize the correlation with the error. In 3, we retrain
the output layer. We train the input weights for another hidden unit in 4. Output layer
is retrained in 5, etc. The usage of Cascade-Correlation architecture has several
advantages over others: it learns very quickly; the network determines its own size
and topology; it retains the structures it has built even if the training set changes; and
it requires no back-propagation of error signals through the connections of the
network.

Fig. 2. Training Procedure of Cascade-Correlation Architecture

For each recommender who gives recommendation, the context

[, , , , , ,]contextV NA RE TD CS PI TL CF under which he gave recommendation orgREC is

used as the input of the Cascade-Correlation architecture. Using the Cascade-
Correlation architecture trained by the previous context and corresponding

recommendations, we will get the output ILREC . ILREC is the recommendation that

the recommender will give due to his past behavior when given the input context

[, , , , , ,]contextV NA RE TD CS PI TL CF .

Compare orgREC and ILREC :

1
IL IL org

com

REC REC REC
REC

else

⎧⎪
⎨
⎪⎩

=
=

−
 (1)

If com ILREC REC= , it means that the recommender gives the same

recommendation as previous behavior in similar context, the possible scenarios are

scenario a and scenario c. Otherwise if 1comREC = − , orgREc is regarded as a doubtful

recommendation, which implies that the recommender’s current behavior on

380 W. Yuan et al.

recommendation giving is different from previous. We will use following steps to
judge whether this doubtful recommendation is malicious.
Step 3: We use this step to get the final recommendation. Since by using step 2 we
have already found the doubtful recommendations, we use basic voting mechanism to

calculate the final recommendation finREC . The voting is among the

recommendations which are not doubtful (com ILREC REC= in (1)).

finREC =
1

1
[]1 [1]

2
0

com i
com i com i

N U M R EC
N U M R E C R E C

else

⎧ ≠ −=⎪
⎨
⎪
⎩

≠ − ≥
, (2)

where comiREC is the comREC of recommender i , i N∈ . [1]comiNUM REC ≠ − means

the number of all the recommendations which are not doubtful.

1[1]comicomiNUM REC REC= ≠− is the number of undoubtful recommendations

which equal to 1.
Step 4: This step is used to find the malicious recommendations (scenario e, f, g and
scenario h) and incorrect recommendations (scenario b and scenario d) from the
doubtful recommendations gotten in step2.

In (1), if 1comREC = − , the possible situations are: A. the recommendation is

malicious or incorrect, the possible scenarios are scenario b, d, e, f, g and scenario h,
B. (1) the recommender’s rule on recommendation giving has changed, i.e. the
recommender gives different recommendation compared with previous one in similar
context, however, this recommendation is also right. This kind of situation is
reasonable since all the things in the world are always in movement, (2) the currently
neural network is not enough to reflect the recommender’s rule on recommendation
giving since the Cascade-Correlation architecture begins with a minimal network and
the knowledge on the recommender’s rule is incrementally increased. We use the
following method to differentiate between situation A and B.

1

1

o rg fin co m

o rg fin co m

s itu a tio n A R E C R E C R E C
resu lt

s itu a tio n B R E C R E C R E C

≠ = −
=

= = −

⎧⎪
⎨
⎪⎩

, (3)

where 1org fin comREC REC REC≠ = − and 1org fin comREC REC REC= = − means

org finREC REC≠ and org finREC REC= when given 1comREC = − respectively.

If the result equals to situation B, [, , , , , ,]contextV NA RE TD CS PI TL CF as well as

orgREC will be given back as retrain data to retrain the Cascade-Correlation

architecture (as showed in Fig.1) to catch up the recommender’s current rule on
recommendation giving. Otherwise if the result is situation A, the record of this
recommender will be given to a separated disposal unit and mark it as doubtful
recommender. If one user appears several times as a doubtful recommender, it will be
considered either as a malicious recommender or a recommender who is unable to

 Finding Reliable Recommendations for Trust Model 381

give correct recommendations. The recommendations given by this recommender
later will be directly filtered out in step1.

4 Simulation Results

Our simulation is based on a ubiquitous computing supported smart office [3]. The
possible recommenders in this smart office have different positions (in other words,
they have different trust levels), such as professor, senior member. For the training of
the original Cascade-Correlation architecture, we randomly choose 5 services
requesters, the recommendations given by different recommenders as well as the
context act as the training data. Each context is a vector including 7 attributes as
shown in Table 1. The learning rate of the Cascade-Correlation neural network is set
to 0.01 and the error tolerance is 0.05. The iterations for training the original neural
network is 2252. As time goes by the Cascade-Correlation architecture will
incrementally learn the new information (retrain data) which will make it closer to
each recommender’s current rule on recommendation giving. The following
subsections give our simulation results in different scenarios mentioned in section 2.

4.1 Fair Recommendations

Fig.3 shows the simulation results when there is no unfair recommendation among all
the recommendations (scenario a and scenario c). Since our approach compares the
recommendations with the recommender’s own previous behaviors, so there is no
difference when dealing with scenario a and c in our architecture. The test data are the
recommendations given by recommenders for different service requesters. The retrain
data in Fig.3 (a) is the recommendations and the corresponding context which got
result situationB= in formula (3).

(a) (b)

Fig. 3. There is no unfair recommendation in total recommendations

As shown in Fig.3 (a), the total valid data is the same as input data, which means
that when there is no unfair recommendation, even there are some recommendations

have the result 1comREC = − in formula (1), no data will be filtered out, in other

382 W. Yuan et al.

words, our approach does not have negative bias when the recommendations are all
fair. Fig.3 (b) shows the simulation result of the Cascade-Correlation architecture
using the data shown in Fig.3 (a). ETrn is the error of training data and ETst is the
error of test data. When the error of training data is less than 0.05, the iteration is
stopped. The sudden raise of ETrn is because of the adding of retrain data which were
found as shown in Fig.3 (a). Due to the retrain of the Cascade-Correlation
architecture, ETst also has the sudden raise along with the raise of ETrn. When ETrn
is reduced to a reasonable level(less than 0.05 in our model), after a number of
iterations, ETst is also reduced to a low level(less than 0.05), which means that the
new neural network can fit the recommender’s current rule.

4.2 Individual Unfair Recommendations

Using the input data as shown in Fig.3 (a), we randomly choose two recommenders
and set their recommendations to be unfair. These data act as input data in this
subsection. Since the recommenders are randomly chosen, they may have different
trust levels. The possible scenarios are scenario b, e and scenario f.

(a) (b)

Fig. 4. There are individual unfair recommendations in total recommendations

The filtered out data as shown in Fig.4 (a) are those got result situationA= in
formula (3), while if result situationB= in formula (3), these data will act as retrain

data. Though 1comREC = − in both case, only the data those act as retrain data can be

valid data. Fig.4 (a) shows that our approach can accurately find the unfair
recommendations (two for each input data as we set previous).

Using formula (2) and the input data showed in Fig.4 (a), we got the same final
recommendation as section 4.1. Fig.4 (b) shows the simulation results for Cascade-
Correlation architecture using the data in Fig.4 (a). The difference between Fig.4 (b)
and Fig.3 (b) is that in Fig.4 (b), ETst is still big (more than 0.3) when ETrn is
reduced to a reasonable level using the retrain data. The reason is that there are unfair
recommendations among the test data (the input data in Fig.4 (a)). Since our approach
can differentiate unfair recommendations from fair recommendations, ETst can not be
reduced to a very low level along with ETrn.

 Finding Reliable Recommendations for Trust Model 383

4.3 Unfair Recommendations Flooding

Using the input data as shown in Fig.3 (a), we randomly choose the majority of
recommenders and set their recommendations to be malicious. These data act as input
data in this subsection. Since the recommenders are randomly chosen, they may have
different trust levels. Therefore the possible scenarios are scenario g and scenario h.
The result of the final recommendation using formula (2) in this case proves the
correctness of our approach when dealing with unfair recommendation flooding since
it is the same as the final decision in section 4.1 and 4.2.

(a) (b)

Fig. 5. There are unfair recommendations flooding in total recommendations

If the unfair recommendations flooding can successfully influence the final
recommendation, the fair recommendations will be regard as unfair. In this case since
the unfair recommendations are majority, ETst can be reduced to a relatively low
level (less than 0.5, the curve will be similar as Fig.4 (b)) along with ETrn. However,
our simulation result shows that for ETst, when ETrn is reduce to a reasonable level,
ETst in Fig.5 (b) is much higher than in Fig.4 (b) (above 0.7), which means that our
approach can defend the unfair recommendations flooding.

4.4 Randomly Given Recommendations

The possible scenario in this case is scenario d. Since the recommendations are
randomly given, there will be random number of filtered out data (as shown in Fig.6
(a)) as well as retrain data. Fig.6 (b) gives the error of Cascade-Correlation
architecture given the data in Fig.6 (a). The curve of ETst does not have regularity. It
can be up to a very high level (near 1.0) since most of recommendations for certain
service requester are unfair and it can also be a very level (lower than 0.05) since the
recommendations for certain service requester are fair. The reason our approach can
filter out the randomly given recommendations is that if the recommendations are
given randomly, it must be different with its own past behavior in similar context.
Therefore, we will get result situationA= in formula (3).

384 W. Yuan et al.

(a) (b)

Fig. 6. The recommendations are randomly given

5 Comparison with Related Works

There are some researches that gave helpful attempts on how to get reliable
recommendations, especially for scenario f and scenario h. One method is to use polling
method, e.g. in [4], the authors used basic polling as well as enhanced polling. The
enhanced polling differs from the basic polling by requesting voters to provide their
servent_id to prevent a single, possible malicious user to create multiple recommendat-
ions at a time. Another very popular method is to give weighted value to each
recommender (also called a reputation-based method) to choose reliable recommendat-
ions. The reputation-based method had been used in a number of works, e.g. weighted
majority algorithm is used in [5], and a Rating Reputation Feedback mechanism is used
in [6] to train the weighted values. In [7] [8] [9] [10], the authors measure the reputation
for each recommender and filter out unfair recommendations based on the usage of the
reputation. Using the combination of different filters is also a reasonable method to filter
out the unfair recommendations, as mentioned in [11] [12] [13] [14]. Their simulation
results suggest that cluster filtering is suitable to reduce the effect of unfairly high
recommendations and positive discriminations and frequency filtering can guarantee the
calculation of trust not be influenced by the unfair raters flooding.

Table.2 gives the comparison between different methods when dealing with different
scenarios as mentioned in section 2. The reason previous methods can not deal with
some of the scenarios is that they took at least one of the following assumptions: (1)
most recommendations are close in the range of the real quality of the product, (2)
recommendations provided by different recommenders on a service requester will
follow more or less the same probability distribution, (3) top ranked recommenders are
the expert recommenders in the trust category, i.e., the higher rank recommender has,
the more authority his recommendation will have. For example, as the most popular
method, reputation-based method takes assumption (3), hence it is impossible for this
method to filter out any of the inside job (scenario e and scenario g). What’s more, if
scenario e and scenario g happens, the higher the recommender’s rank is, the more
serious aftereffect there will be. Our approach is effective in different scenarios because
the comparison used to filter out the unfair recommendations is not between different
recommenders but between each recommender’s own current behavior and previous
behavior. Hence we do not take any of these assumptions.

 Finding Reliable Recommendations for Trust Model 385

Table 2. Comparison between different methods

Scenario Polling Weight-based
(Reputation-based)

Combination of
Filters

Our
Approach

a Y Y Negative
Reputation Bias

Y

b Y High Rank User N
Low Rank User Y

Y Y

c N High Rank User Y
Low Rank User N

N Y

d N High Rank User N
Low Rank User Y

Effective when
variance is large

Y

e Y N Y Y
f Y Y Y Y
g N N Y Y
h N Y Y Y

However, the cost of our method is that it takes longer time for our approach to find
the reliable recommendations. The reason is that to judge the validity of
recommendations, each recommender’s current behavior should be compared with his
past behaviors. However, since these calculations take place in the service agent
which has enough computing ability, we believe that it does not distinctly affect the
efficiency of the whole trust model.

6 Conclusions

In this paper we propose a robust trust model for ubiquitous environments, in which a
context-based approach is used to filter out the unfair recommendations. The learning
of the context is based on incremental learning neural network. The filtered out
recommendations may be the intended unfair recommendations as well as the mis-
observation by the recommenders. We also focus on the flooding of unfair
recommendations in this paper. Since our approach concentrates on the doubtful
behavior of each entity, it has special advantages when dealing with inside job, which
is lack of considerations in the current trust models.

In the future work, we plan to focus on the scalability of trust model since our trust
model is merely used in a smart office now. And we also want to find the relationship
between different attributes in the context shown in Table.1, and try to find the most
important ones. We also plan to add risk analysis in our context-based trust model.
Based on our comparison between our context-based approach and other methods, we
believe that the usage of context-based trust model and incremental learning neural
network within ubiquitous environments application presents a promising path for the
future research.

Acknowledgment. This research was supported by the MIC (Ministry of Information
and Communications), Korea under the ITRC (Information Technology Research
Center) support program supervised by the IITA (Institute of Information Technology
Assessment) in collaboration with SunMoon University.

386 W. Yuan et al.

References

1. Robi Polikar, Lalita Udpa, Satish S. Udpa and Vasant Honavar, “learn++: An Incremental
Learning Algorithm for Supervised Neural Networks”, IEEE transactions on systems,
man, and cybernetics-Part C: Applications and Reviews, Vol. 31, NO.4, Nov.2001

2. Scott E. Fahlman, Christian Lebiere, “The Cascade-Correlation Learning Architecture”.
Technical Report CMU-CS-90-100, School of Computer Science, Carnegie Mellon
University

3. Hung Q. Ngo, Anjum Shehzad, Saad Liaquat Kiani, Maria Riaz, Kim Anh Ngoc,
Sungyong Lee.: Developing Context-aware Ubiquitous Computing Systems with a Unified
Middleware Frame Work. The 2004 International Conference on Embedded & Ubiquitous
Computing (EUC2004)

4. Damiani, Vimercati, Paraboschi, Samarati, and Violante, “A reputation-based approach for
choosing reliable resources in peer-to-peer networks”, 9th ACM CCS 2002

5. Bin Yu, Munindar P. Singh, and Katia Sycara, “Developing trust large-scale peer-to-peer
systems”, First IEEE Symposium on Multiagent Security and Survivability, 2004

6. Ping Xu, Ji Gao, Hang Guo, “Rating Reputation: a necessary consideration in reputation
mechanism”, Proceedings of 2005 International Conference on Machine Learning and
Cybernetics

7. Whitby, A., Josang, A. and Indulska, J. “Filtering out unfair ratings in Bayesian reputation
systems”, AAMAS 2004, New York, USA

8. Weihua Song, Vir V. P hoha, and Xin Xu, “An adaptive recommendation trust model in
multiagent system”, IEEE/WIC/ACM IAT’04

9. Weihua Song, Vir V. Phoha, “Neural network-based reputation model in a distributed
system”, pp. 321-324, 2004 IEEE International Conference on E-Commerce Technology
(CEC'04), 2004

10. Huang Baohua; Hu Heping; Lu Zhengding, “Identifying local trust value with neural
network in p2p environment”, The First IEEE and IFIP International Conference in
Central Asia on Internet, 2005

11. C. Dellarocas, “The design of reliable trust management systems for electronic trading
communities”, MIT Working Paper

12. C. Dellarocas , “Building trust online: the design of robust reputation reporting
mechanisms for online trading communities” A combined perspective on the digital era,
Doukidis, G., Mylonopoulos, N. and Pouloudi, N. (Eds.), Idea Book Publishing (2004)

13. C. Dellarocas. “Immunizing online Reputation Reporting systems against unfair ratings
and discriminatory behavior”, In Proceedings of the ACM Conference on Electronic
Commerce, pages 150--157, Minneapolis, Minnesota, USA, 2000

14. Chrysanthos Dellarocas , “Mechanisms for coping with unfair ratings and discriminatory
behavior in online reputation reporting systems”, In ICIS, pages 520--525, 2000

	Introduction
	Recommendation Scenarios in Ubiquitous Environments
	The Proposed Approach
	Simulation Results
	Fair Recommendations
	Individual Unfair Recommendations
	Unfair Recommendations Flooding
	Randomly Given Recommendations

	Comparison with Related Works
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

