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Abstract. This paper presents a novel context-based approach to find reliable 
recommendations for trust model in ubiquitous environments. Context is used 
in our approach to analyze the user’s activity, state and intention. Incremental 
learning based neural network is used to dispose the context in order to detect 
doubtful recommendations. This approach has distinct advantages when dealing 
with randomly given irresponsible recommendations, individual unfair 
recommendations as well as unfair recommendations flooding regardless of 
from recommenders who always give malicious recommendations or “inside 
job” (recommenders who acted honest previous suddenly give unfair 
recommendations), which is lack  of consideration in the previous works. The 
incremental learning based neural network used in our approach also enables to 
filter out the unfair recommendations with limited information about the 
recommenders. Our simulation results show that our approach can effectively 
find reliable recommendations in different scenarios and a comparison is also 
given between previous works and our method. 

1   Introduction 

Computational models of trust have been proposed for ubiquitous environments 
because they are capable of deciding on the runtime whether to provide services to 
requesters who are either unfamiliar with service providers or do not have enough 
access rights to certain services. The basis for the trust model to make decision for 
unfamiliar service requesters are the recommendations given by recommenders who 
have past interaction history with the requesters. However, in the large-scale, open, 
dynamic and distributed ubiquitous environments, there may possibly exist numerous 
self-interested recommenders who give unfair recommendations to maximize their 
own gains (perhaps at the cost of others). Since recommendations given by 
recommenders are the key point for the trust model to make decision, finding ways to 
avoid or reduce the influence of unfair positive or negative recommendations from 
self-interested recommenders is a fundamental problem for trust model in ubiquitous 
environments. At the same time, because of the highly dynamic nature of ubiquitous 
environments, it is not always easy to get enough information about the 
recommenders. Hence the trust model is required to find the reliable 
recommendations with limited information about the recommenders. 
                                                           
* Corresponding author. 
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The objective of this paper is to contribute to an approach which can find the 
reliable recommendations for the trust model in ubiquitous environments. This paper 
sets the stage by identifying a novel context-based approach using incremental 
learning algorithm. Context is used in our approach to analyze the user’s activity, 
state and intention. The learning of context is incrementally increased by a Cascade-
Correlation architecture neural network. By analyzing the context under which the 
recommendation was given, our method is able to filter out unfair recommendations 
in different scenarios. The advantages of our proposed approach are: (1) it can filter 
out randomly given irresponsible recommendations, individual unfair 
recommendations as well as unfair recommendations flooding no matter the 
recommendations are from recidivist (recommenders who always give malicious 
recommendations) or inside job (recommenders who acted honest suddenly give 
unfair recommendation on the benefit of themselves), (2) it can differentiate doubtful 
recommendations due to different reasons: the changing behaviors of service 
requesters in front of different recommenders, the incorrect observations by 
recommenders, as well as malicious intention of recommenders, (3) it is able to detect 
the malicious recommendations when limited information is available for the 
recommenders which is usually the case in a real scenario. 

The rest of the paper is organized as follows. Section 2 gives the recommendation 
scenarios in ubiquitous environments. Section 3 gives our proposed approach in 
details. Section 4 gives the simulation results. Section 5 shows the comparison 
between our approach and previous works. The last section concludes the paper and 
points out the future work.   

2   Recommendation Scenarios in Ubiquitous Environments 

For the trust model in ubiquitous environments, the possible scenarios for the 
recommendations given by recommenders are as follows: 

(1) Normal Recommendations. 
a. Honest recommenders give accurate recommendations. 
(2) Abnormal Recommendations. 
b. Honest recommenders give inaccurate recommendations due to their incorrect 

observation. 
c. Due to the changing behavior of service requester in front of different 

recommenders, honest recommenders give exceptional recommendations compared 
with recommendations given by other recommenders. 

d. Recommenders give random recommendations at ease due to the lack of 
responsibility. 

(3) Malicious Recommendations. 
e. Recommenders who acted honest give unfair high or low recommendations 

individually. The past behaviors of these recommenders were always honest. 
However, they suddenly give unfair recommendations due to the relationship with the 
service requester or their own benefits. (Called Inside Job) 

f. Recommenders who acted malicious give unfair high or low recommendations 
individually. Different from the recommenders in scenario e, these recommenders 
always give malicious recommendations in the past.  
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g. A number of recommenders who acted honest collude to give unfair 
recommendations (more than 50% of total recommendations), which causes the 
flooding of unfair recommendations. (Called Inside Job Flooding) 

h. Unfair recommendations flooding similar as scenario g, but caused by 
recommenders whose past behaviors were always malicious. 

A reliable trust model in ubiquitous environments should have the ability to filter 
out the recommendations in scenario b, d, e, f, g and scenario h, distinguish 
recommendations in scenario b and scenario d from recommendations in scenarios a, 
and differentiate scenario c apart from scenario b, d, e and scenario f.   

3   The Proposed Approach 

Trust is subjective since it is based on each user’s own understanding of information. 
Hence it is relatively easy for the malicious recommender to pretend honest and for 
the honest recommender to be misunderstood as malicious, which makes it difficult to 
differentiate between the unfair and fair recommendations. Our key idea for the 
solution is that: different recommenders may give different recommendations due to 
their different understandings on the same information, however, from the view of 
psychology, one recommender will follow his own rule on recommendation giving, 
i.e., one recommender usually gives similar recommendations in similar context. In 
case one recommender gives exceptional recommendations compared with his 
previous ones in similar context, the reason lies in two aspects. One reason is that this 
exceptional recommendation is a malicious recommendation and should be filtered 
out. The other reason is that the recommender’s rule on recommendation giving has 
changed, e.g. due the environments’ effect on him, one recommender now only gives 
positive recommendation to the service requester whose past interaction with him are 
more than 80% successful in stead of 60%. In this case, our architecture will use 
incremental learning algorithm to catch up the recommender’s new rule.  

Table 1. Context used in our approach 

ID AB. Context Example 
1 NA User Name Weiwei 
2 RE Relationship with other agents Senior member 
3 TD Time/date of request Weekday/daytime 
4 CS Current state Busy working 
5 PI Past interaction history with service requester 57% successful 
6 TL Time of last communication Within 3 days 
7 CF Confidence for the service requester in given 

time window 
Number of total 
Communication is 27 

To learn each recommender’s rule on recommendation giving, we use incremental 
learning based neural network to learn the recommendations as well as the context 
under which the recommendations were given by the recommenders. The reason we 
use incremental learning is that the acquisition of a representative training data for the 
rule is time consuming and the rule is also possible to dynamically change from time 
to time. Consequently, it is not uncommon for such data to become available in small 
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batches over a period of time. In such setting, it is necessary to update an existing 
classifier in an incremental fashion to accommodate new data without compromising 
classification performance on old data [1]. The context which may relate to the 
learning of the rule is shown in Table1. Attributes 1, 3 and 4 of the context are 
specifically bounded to the recommender’s activity or state, and the other attributes 
are supposed to hold regardless of the recommender’s state since it depends on 
relationship of the external world where the recommender is currently situated. 

We use the following architecture (shown in Fig.1.) to filter out the unfair 
recommendations. 

 

Fig. 1. Architecture Used for Filtering out Unfair Recommendations 

Step 1: Recommendation Manager collects recommendations ( orgREC ) from all the 

recommenders, along with the context value [ , , , , , , ]contextV NA RE TD CS PI TL CF  

under which recommendations were given by each recommender, where NA, RE, TD, 
CS, PI, TL, CF represent the context attributes mentioned in Table 1 from (1) to (7) 
respectively.   

1
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⎧⎪
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=  
 

Step 2: We use this step to find the doubtful recommendations from those gotten by 
step 1. To achieve this, we use incremental learning neural network, in particular, the 
Cascade-Correlation architecture.  
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Cascade-Correlation is useful for incremental learning, in which new information is 
added to an already-trained network. It is an architecture of neural network which 
begins with minimal network, then automatically trains and adds new hidden units 
one by one, creating a multi-layer structure. Once a new hidden unit has been added 
to the network, its input-side weights are frozen. This unit then becomes a permanent 
feature-detector in the network, available for producing outputs or for creating other, 
more complex feature detector [2]. Fig.2 gives the process of training Cascade-
Correlation. In 1, we train the weights from input to output. In 2, we add a candidate 
unit and train its weights to maximize the correlation with the error. In 3, we retrain 
the output layer. We train the input weights for another hidden unit in 4. Output layer 
is retrained in 5, etc. The usage of Cascade-Correlation architecture has several 
advantages over others: it learns very quickly; the network determines its own size 
and topology; it retains the structures it has built even if the training set changes; and 
it requires no back-propagation of error signals through the connections of the 
network.  

 

Fig. 2. Training Procedure of Cascade-Correlation Architecture 

For each recommender who gives recommendation, the context 

[ , , , , , , ]contextV NA RE TD CS PI TL CF  under which he gave recommendation orgREC  is 

used as the input of the Cascade-Correlation architecture. Using the Cascade-
Correlation architecture trained by the previous context and corresponding 

recommendations, we will get the output ILREC . ILREC is the recommendation that 

the recommender will give due to his past behavior when given the input context 

[ , , , , , , ]contextV NA RE TD CS PI TL CF . 

Compare orgREC and ILREC :   

1
IL IL org

com

REC REC REC
REC

else

⎧⎪
⎨
⎪⎩

=
=

−
 (1) 

If com ILREC REC= , it means that the recommender gives the same 

recommendation as previous behavior in similar context, the possible scenarios are 

scenario a and scenario c. Otherwise if 1comREC = − , orgREc is regarded as a doubtful 

recommendation, which implies that the recommender’s current behavior on 
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recommendation giving is different from previous. We will use following steps to 
judge whether this doubtful recommendation is malicious.  
Step 3: We use this step to get the final recommendation. Since by using step 2 we 
have already found the doubtful recommendations, we use basic voting mechanism to 

calculate the final recommendation finREC . The voting is among the 

recommendations which are not doubtful ( com ILREC REC=  in (1)). 

finREC =
1

1
[ ]1 [ 1]

2
0

com i
com i com i

N U M R EC
N U M R E C R E C

else

⎧ ≠ −=⎪
⎨
⎪
⎩

≠ − ≥
, (2) 

where comiREC is the comREC of recommender i , i N∈ . [ 1]comiNUM REC ≠ − means 

the number of all the recommendations which are not doubtful. 

1[ 1]comicomiNUM REC REC= ≠−  is the number of undoubtful recommendations 

which equal to 1.  
Step 4: This step is used to find the malicious recommendations (scenario e, f, g and 
scenario h) and incorrect recommendations (scenario b and scenario d) from the 
doubtful recommendations gotten in step2.  

In (1), if 1comREC = − , the possible situations are: A. the recommendation is  

malicious or incorrect, the possible scenarios are scenario b, d, e, f, g and scenario h, 
B. (1) the recommender’s rule on recommendation giving has changed, i.e. the 
recommender gives different recommendation compared with previous one in similar 
context, however, this recommendation is also right. This kind of situation is 
reasonable since all the things in the world are always in movement, (2) the currently 
neural network is not enough to reflect the recommender’s rule on recommendation 
giving since the Cascade-Correlation architecture begins with a minimal network and 
the knowledge on the recommender’s rule is incrementally increased. We use the 
following method to differentiate between situation A and B.   

1

1

o rg fin co m

o rg fin co m

s itu a tio n A R E C R E C R E C
resu lt

s itu a tio n B R E C R E C R E C

≠ = −
=

= = −

⎧⎪
⎨
⎪⎩

, (3) 

where 1org fin comREC REC REC≠ = − and 1org fin comREC REC REC= = −  means 

org finREC REC≠ and org finREC REC= when given 1comREC = − respectively. 

If the result equals to situation B, [ , , , , , , ]contextV NA RE TD CS PI TL CF as well as   

orgREC will be given back as retrain data to retrain the Cascade-Correlation 

architecture (as showed in Fig.1) to catch up the recommender’s current rule on 
recommendation giving. Otherwise if the result is situation A, the record of this 
recommender will be given to a separated disposal unit and mark it as doubtful 
recommender. If one user appears several times as a doubtful recommender, it will be 
considered either as a malicious recommender or a recommender who is unable to 
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give correct recommendations. The recommendations given by this recommender 
later will be directly filtered out in step1. 

4   Simulation Results 

Our simulation is based on a ubiquitous computing supported smart office [3]. The 
possible recommenders in this smart office have different positions (in other words, 
they have different trust levels), such as professor, senior member. For the training of 
the original Cascade-Correlation architecture, we randomly choose 5 services 
requesters, the recommendations given by different recommenders as well as the 
context act as the training data. Each context is a vector including 7 attributes as 
shown in Table 1. The learning rate of the Cascade-Correlation neural network is set 
to 0.01 and the error tolerance is 0.05. The iterations for training the original neural 
network is 2252. As time goes by the Cascade-Correlation architecture will 
incrementally learn the new information (retrain data) which will make it closer to 
each recommender’s current rule on recommendation giving. The following 
subsections give our simulation results in different scenarios mentioned in section 2. 

4.1   Fair Recommendations  

Fig.3 shows the simulation results when there is no unfair recommendation among all 
the recommendations (scenario a and scenario c). Since our approach compares the 
recommendations with the recommender’s own previous behaviors, so there is no 
difference when dealing with scenario a and c in our architecture. The test data are the 
recommendations given by recommenders for different service requesters. The retrain 
data in Fig.3 (a) is the recommendations and the corresponding context which got 
result situationB= in formula (3).  

 

 
(a)                (b) 

Fig. 3. There is no unfair recommendation in total recommendations 

As shown in Fig.3 (a), the total valid data is the same as input data, which means 
that when there is no unfair recommendation, even there are some recommendations 

have the result 1comREC = − in formula (1), no data will be filtered out, in other 
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words, our approach does not have negative bias when the recommendations are all 
fair. Fig.3 (b) shows the simulation result of the Cascade-Correlation architecture 
using the data shown in Fig.3 (a). ETrn is the error of training data and ETst is the 
error of test data. When the error of training data is less than 0.05, the iteration is 
stopped. The sudden raise of ETrn is because of the adding of retrain data which were 
found as shown in Fig.3 (a). Due to the retrain of the Cascade-Correlation 
architecture, ETst also has the sudden raise along with the raise of ETrn. When ETrn 
is reduced to a reasonable level(less than 0.05 in our model), after a number of 
iterations, ETst is also reduced to a low level(less than 0.05), which means that the 
new neural network can fit the recommender’s current rule.  

4.2   Individual Unfair Recommendations  

Using the input data as shown in Fig.3 (a), we randomly choose two recommenders 
and set their recommendations to be unfair. These data act as input data in this 
subsection. Since the recommenders are randomly chosen, they may have different 
trust levels. The possible scenarios are scenario b, e and scenario f. 
 

 
(a)                                 (b) 

Fig. 4. There are individual unfair recommendations in total recommendations 

The filtered out data as shown in Fig.4 (a) are those got result situationA= in 
formula (3), while if result situationB= in formula (3), these data will act as retrain 

data. Though 1comREC = − in both case, only the data those act as retrain data can be 

valid data. Fig.4 (a) shows that our approach can accurately find the unfair 
recommendations (two for each input data as we set previous).  

Using formula (2) and the input data showed in Fig.4 (a), we got the same final 
recommendation as section 4.1. Fig.4 (b) shows the simulation results for Cascade-
Correlation architecture using the data in Fig.4 (a). The difference between Fig.4 (b) 
and Fig.3 (b) is that in Fig.4 (b), ETst is still big (more than 0.3) when ETrn is 
reduced to a reasonable level using the retrain data. The reason is that there are unfair 
recommendations among the test data (the input data in Fig.4 (a)). Since our approach 
can differentiate unfair recommendations from fair recommendations, ETst can not be 
reduced to a very low level along with ETrn.  
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4.3   Unfair Recommendations Flooding  

Using the input data as shown in Fig.3 (a), we randomly choose the majority of 
recommenders and set their recommendations to be malicious. These data act as input 
data in this subsection. Since the recommenders are randomly chosen, they may have 
different trust levels. Therefore the possible scenarios are scenario g and scenario h. 
The result of the final recommendation using formula (2) in this case proves the 
correctness of our approach when dealing with unfair recommendation flooding since 
it is the same as the final decision in section 4.1 and 4.2. 

 

 
 

(a)      (b) 

Fig. 5. There are unfair recommendations flooding in total recommendations 

If the unfair recommendations flooding can successfully influence the final 
recommendation, the fair recommendations will be regard as unfair. In this case since 
the unfair recommendations are majority, ETst can be reduced to a relatively low 
level (less than 0.5, the curve will be similar as Fig.4 (b)) along with ETrn. However, 
our simulation result shows that for ETst, when ETrn is reduce to a reasonable level, 
ETst in Fig.5 (b) is much higher than in Fig.4 (b) (above 0.7), which means that our 
approach can defend the unfair recommendations flooding.  

4.4   Randomly Given Recommendations 

The possible scenario in this case is scenario d. Since the recommendations are 
randomly given, there will be random number of filtered out data (as shown in Fig.6 
(a)) as well as retrain data. Fig.6 (b) gives the error of Cascade-Correlation 
architecture given the data in Fig.6 (a). The curve of ETst does not have regularity. It 
can be up to a very high level (near 1.0) since most of recommendations for certain 
service requester are unfair and it can also be a very level (lower than 0.05) since the 
recommendations for certain service requester are fair. The reason our approach can 
filter out the randomly given recommendations is that if the recommendations are 
given randomly, it must be different with its own past behavior in similar context. 
Therefore, we will get result situationA= in formula (3). 

 



384 W. Yuan et al. 

 
(a)     (b) 

Fig. 6. The recommendations are randomly given 

5   Comparison with Related Works 

There are some researches that gave helpful attempts on how to get reliable 
recommendations, especially for scenario f and scenario h. One method is to use polling 
method, e.g. in [4], the authors used basic polling as well as enhanced polling. The 
enhanced polling differs from the basic polling by requesting voters to provide their 
servent_id to prevent a single, possible malicious user to create multiple recommendat-
ions at a time. Another very popular method is to give weighted value to each 
recommender (also called a reputation-based method) to choose reliable recommendat-
ions. The reputation-based method had been used in a number of works, e.g. weighted 
majority algorithm is used in [5], and a Rating Reputation Feedback mechanism is used 
in [6] to train the weighted values. In [7] [8] [9] [10], the authors measure the reputation 
for each recommender and filter out unfair recommendations based on the usage of the 
reputation. Using the combination of different filters is also a reasonable method to filter 
out the unfair recommendations, as mentioned in [11] [12] [13] [14]. Their simulation 
results suggest that cluster filtering is suitable to reduce the effect of unfairly high 
recommendations and positive discriminations and frequency filtering can guarantee the 
calculation of trust not be influenced by the unfair raters flooding. 

Table.2 gives the comparison between different methods when dealing with different 
scenarios as mentioned in section 2. The reason previous methods can not deal with 
some of the scenarios is that they took at least one of the following assumptions: (1) 
most recommendations are close in the range of the real quality of the product, (2) 
recommendations provided by different recommenders on a service requester will 
follow more or less the same probability distribution, (3) top ranked recommenders are 
the expert recommenders in the trust category, i.e., the higher rank recommender has, 
the more authority his recommendation will have.  For example, as the most popular 
method, reputation-based method takes assumption (3), hence it is impossible for this 
method to filter out any of the inside job (scenario e and scenario g). What’s more, if 
scenario e and scenario g happens, the higher the recommender’s rank is, the more 
serious aftereffect there will be. Our approach is effective in different scenarios because 
the comparison used to filter out the unfair recommendations is not between different 
recommenders but between each recommender’s own current behavior and previous 
behavior. Hence we do not take any of these assumptions. 



 Finding Reliable Recommendations for Trust Model 385 

Table 2. Comparison between different methods  

Scenario Polling Weight-based 
(Reputation-based) 

Combination of 
Filters 

Our  
Approach 

a Y Y Negative 
Reputation Bias 

Y 

b Y High Rank User N 
Low Rank User Y 

Y Y 

c N High Rank User Y 
Low Rank User N 

N Y 

d N High Rank User N 
Low Rank User Y 

Effective when 
variance is large 

Y 

e Y N Y Y 
f Y Y Y Y 
g N N Y Y 
h N Y Y Y 

However, the cost of our method is that it takes longer time for our approach to find 
the reliable recommendations. The reason is that to judge the validity of 
recommendations, each recommender’s current behavior should be compared with his 
past behaviors. However, since these calculations take place in the service agent 
which has enough computing ability, we believe that it does not distinctly affect the 
efficiency of the whole trust model.   

6   Conclusions  

In this paper we propose a robust trust model for ubiquitous environments, in which a 
context-based approach is used to filter out the unfair recommendations. The learning 
of the context is based on incremental learning neural network. The filtered out 
recommendations may be the intended unfair recommendations as well as the mis-
observation by the recommenders. We also focus on the flooding of unfair 
recommendations in this paper. Since our approach concentrates on the doubtful 
behavior of each entity, it has special advantages when dealing with inside job, which 
is lack of considerations in the current trust models.  

In the future work, we plan to focus on the scalability of trust model since our trust 
model is merely used in a smart office now. And we also want to find the relationship 
between different attributes in the context shown in Table.1, and try to find the most 
important ones. We also plan to add risk analysis in our context-based trust model. 
Based on our comparison between our context-based approach and other methods, we 
believe that the usage of context-based trust model and incremental learning neural 
network within ubiquitous environments application presents a promising path for the 
future research.   
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