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Abstract— One of most perspective and popular area of 
neural networks is neuromorphic computing dealing with 
development of brain-like spike neural networks oriented on 
hardware implementation. Such neural networks will provide 
replacement of computers with Von Neumann architecture in 
such fields as computer vision and control of autonomous robots. 
In this paper we suggest one model of spike integrate and fire 
neuron for development of such neural networks. This model is 
distinguished by simple arithmetic operations, providing, short-
long controlled memory of integrated input signals and 
controlled refractory period for output. Proposed model will 
provide simple hardware implementation. 
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I.  INTRODUCTION 
Last years researchers and developers are interesting in 

neuromorphic technologies focusing on development of 
hardware spike neural networks with behaviour similar to real 
neocortex [1-6]. Most significant reason is rise of intelligent 
autonomous robots and visual systems demanding processing 
of visual information in real time. Besides neuromorphic 
networks aim to employ for processing of big data. 
Implementation of such processing in conventional computer 
with Von Neumann architecture is very ineffective, in 
particular, power-consuming. Besides autonomous robots 
demand low power consumption. 

Known several powerfully supported programs and 
projects in this field: 

- Project DARPA Synapse (DARPA’s Systems of 
Neuromorphic Adaptive Plastic Scalable Electronics initiative) 
(http://www.artificialbrains.com/darpa-synapse-program) 
providing by IBM Research and HRL Laboratories with 
cooperation of some universities of USA. It was started in 
2008 [7]. The goal of this project is to design a neuromorphic 
chip which is able to replicate a mammalian brain in size, 
functionality and power consumption: it should be able to 
recreate 1010 neurons with 1014 synapses consuming 1KW of 
electrical power and occupying 2dm3 (liters) of space. 

- Project HBP (Human Brain Project) 
(https://www.humanbrainproject.eu/en_GB) of EU providing 
by different scientific centres and universities of Europe and 

including subprojects Neuromorphic Computing, Cognitive 
Architectures, Neurorobotics, Neuroinformatics and others. 

- Project SpiNNaker (http://apt.cs.manchester.ac.uk 
/projects/SpiNNaker/project) of UK providing by University 
of Manchester, University of Southampton, University of 
Cambridge, University of Sheffield, ARM Ltd, Silistix Ltd, 
Thales. This project is a hardware-based, real-time, universal, 
neural network simulator following an event-driven 
computational approach [8]. It involves the design of a chip 
and the development of dedicated software to simulate neural 
networks. 

- Project of company Qualcomm 
(http://www.slashgear.com/qualcomm-zeroth-processors-
official-mimicking-human-brain-computing-14301263/). 

- Project MONETA of Hewlett Packard [5]. This project 
aims to develop spike neural networks based on memristors. 

- Blue Brain Project of EPFL (http://bluebrain.epfl.ch/) 
(from 2005) aims to provide a computational substrate for 
molecular-level simulations that present biological realism. 
The goal of this platform is to simulate the brains of 
mammalians with a high level of biological accuracy and, 
ultimately, to study the emergence of biological intelligence 
[9]. 

- Project Neurogrid of Group “Brains-In-Silicon” and 
Stanford University [10]. The core of this simulator is a 
neuromorphic analogue chip simulating leaky integrate-and-
fire neurons in real-time [11]. This neuro chip is a hardware 
simulator running in real-time without learning capabilities. 

- Project FACETS/BrainScales (http://facets.kip.uni-
heidelberg.de/images/4/48/Public--FACETS_15879_ 
Summary-flyer.pdf) of some universities leading by 
Helderberg University. This project delivered wafer-scale 
integration of neuromorphic chips which simulate adaptive 
exponential leaky integrate-and-fire neurons [12]. 

Most of powerful and perspective of them are first three 
projects. The project SYNAPSE supports two ways of 
research: development of spike neuron networks in traditional 
digital VLSI technology [7], [13] and analog-digital 
technology based on memristors [14], [15], some novel 
devices appropriate for simulation of synapses of neurons. 



Although usage of memristors seems as very perspective 
and widely developing approach, the digital approach is more 
realistic now. Technology of memristors will be usable just 
through about 7-10 years. So we focus on digital CMOS 
technology for implementation of spike neural networks. 

Existing neurochips and models of neuron employed inside 
it have any disadvantages. For example, chip developed in 
2014 by scientists of IBM Research TrueNorth [14], [16] with 
5,4 billions of transistor supporting implementation of about 1 
million neurons with 256 millions connections between them 
has not any capabilities to learn during exploitation. All 
learning to solve any task is provided by host computer with 
conventional architecture and special software tools 
previously. So that can not provide opportunity to adapt with 
changing environment during exploitation of neural network. 

Besides in existing models of spike neurons after firing of 
neuron a level of stimulus (membrane potential) resets to zero. 
We offer another mechanism to implement a refractory period 
of neuron based on changing of threshold. We think that this 
approach provides information processes more flexible and 
similar to existing in biological neuron. 

II. PROPOSED MODEL OF NEURON 
Analyzing problem of neural networks implementation in 

FPGA may be formulated follow requirements to model of 
neural network: 

1) only integers or at least real numbers with fix point 
should be used, 

2) only simple arithmetic operations such as adding and 
subtraction or at least minimization of usage of multiplication, 
should be used, 

3) discrete time (clock rate) should be used, 

4) ensuring demonstration of behaviour basically similar to 
behaviour of real biological neuron as we understand it in 
current time, i.e. must integrate in space and time input signals 
and generate output signals as frequency modulation of level 
of stimulus.  

Most of existing models of spike integrate-and-fire 
neurons aim to similar biological neuron carefully as possible, 
for example, model of Hodgkin and Huxley [2] and of 
Izhikevich [17]. These models are not satisfied requirements 
described above. 

Our proposed model of neuron satisfying upper 
requirements has structure shown in Figure 1. 

 

 
Fig. 1. Model of Spike Neuron. 

Output signal of neuron on moment of time t is described 
as: 
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where H – threshold of neuron, 

U(t) – level of stimulation of neuron in t, 

S(t) – output signal of neuron in t.  

Level of stimulus of neuron is described as: 
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where r is rate of increasing of U by one input pulse. This 
parameter is constant for all neurons in contrast to wi. 

Level of stimulus of neuron depends on weighted stimulus 
of inputs in past time and decreases in every tact by ∆U. Every 
signal from any i-th input increases level of stimulus adding wi 
to level of stimulus. Thus neuron remembers old signals in 
level of stimulus and little by little forgets them. In other 
words, more fresh input signals more influence on possibility 
of firing of neuron.  

To provide frequency modulation of output signal the 
threshold of neuron is changing in accordance with following 
formulas: 
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Figure 2 illustrates behaviour of proposed model with 
assumption that the neuron has 3 inputs: from Sensor 1, 
Sensor 2 and another neuron. Sensor 1 generates pulse at 
decreasing of any measured value and Sensor 2 – at increasing 
of one.  Figure 2 shows frequency modulated output signal 
depending of stimulus level of neuron and memorization and 
forgetting of input signals in neuron (its stimulus level).  
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Fig. 2. Diagram of signals in proposed model of neuron. 

Thus proposed model is characterized by following 
parameters: 

1) Level of stimulus U (supposed integer number from 0 to 
255); 

2) Level of threshold H (supposed integer number from 0 
to 255); 

3) Value of weights w (supposed integer number from -127 
to +127); 

4) Rate of decreasing of threshold ∆H (supposed integer 
number from 0 to 255);  

5) Rate of forgetting of input level of stimulus 
∆U(supposed integer number from 0 to 255); 

6) Rate of increasing of U by one input pulse; 

7) Number of inputs (constrained by size of core and 
architecture of links between neurons in FPGA 
implementation).  

These parameters can be setting and changing during 
training of neural network in host computer before 
exploitation. We suppose that parameter 3 (weights) and 
probably 6 can be changed during exploitation providing 
adaptation of neural network to dynamical environment and 
features of solving task. 

Algorithm of Neuron in any moment t is following: 

procedure Neuron; 
new_U:=U; 
new_S:=0; 
for i from 1 to Ns 
     if Si=1 then 
           new_U:=new_U+wi; 
if new_U>=Umax then 
        U:=new_U 
     else 
        U:=Umax; 
if U>H then 

     begin 
          new_S:=1; 
          H:=Hmax; 
     end 
     else 
           H:=H-∆H; 
 
Proposed model of neuron provides two different regimes 

of usage depending on values of parameters: 
- frequency modulation of stimulus, integrating in time 

from weighted inputs 
- recognition of any pattern (event) consisting of single 

signals or series of signals with enough frequency 
from weighted inputs. 

First regime may be used mostly in low layers of neural 
network to convert level of signal to series of pulses with 
corresponding frequency. Second regime may be employed to 
recognize any feature or fragment of image and image in 
whole. 

III. SIMULATION OF SIMPLE NEURAL NETWORKS BASED ON 
PROPOSED MODEL 

Some previous experiments with program model in C++ of 
this neuron were conducted. In all figures every line 
corresponds to activity of certain neuron (number of neuron 
rises from top to bottom of figure). Figure 3 shows any 
features of signal processing by simple neural networks from 2 
neurons. 

In Figure 3 a) first neuron has one synapse obtaining signal 
from sensor every tact with weight 1 and second neuron has 
one synapse connected with output of first one. 

In Figure 3 b) first neuron has one synapse obtaining 
signal from sensor every tact with weight 1 and another 
synapse from output of neuron 2 with weight -1 (inhibitory 
synapse), second neuron has one synapse connected with 
output of first one. Thus this network has simple feedback. 
Another parameters of this simple network is following: 
∆H=5, ∆U=1,r=5,Hmax=255, Umax=255.  

 

a) 

 
b) 

 
Fig. 3. Signals in simple 2-neurons network. 

Figure 4 shows results of simulation of neural network 
consisting of 11 neurons: 10 of them are connecting by inputs 
with 10 different sensors with weights 20 and 11th neuron is 



connecting with outputs of these 10 neurons with weights 5. 
Sensors in this experiment are without stimulus. 

 
Fig. 4. Simulation of neural network from 11 neurons 

Figure 5 shows results of simulation of same neural 
network, but sensors 1, 2 and 3 in series started generation of 
signals and then sets off in the reverse order. 

 
Fig. 5. Simulation of neural network from 11 neurons with activity of sensors 
1, 2 and 3. 

Experiments demonstrate that to obtain more appropriate 
frequency modulation it is necessary to use degenerative 
feedback. Neuron with such feedback with weight -20 is 
shown in figure 6 and simulation in figure 7 (compare with 
figure 2a without feedback).  

Fig. 6. Neuron with degenerative feedback. 

 
Fig.. 7. Frequency modulation of input signal by neuron with degenerative 
feedback (input signal is increasing from up to down). 

Figure 8 shows similar experiment as in figure 5 but with 
degenerative feedback for input neurons and output neuron. 

 
Fig. 8. . Simulation of neural network including 11 neurons with activity of 
sensors 1, 2 and 3 with degenerative feedback.    

IV. ON TRAINING OF PROPOSED MODEL 
The following list summarizes the desired properties of the 

learning method to be potentially suitable for the considered 
class of applications: 

1) Ability to reconstruct precise timing of individual spikes 
in spike sequences; 

2) On-line processing ability; 

3) Stability of the optimal solution; 

4) Locality. 

To train this model may employ known algorithm STDP 
(Spike-Timing Dependent Plasticity) [18] as modified for 
spike networks Hebb’s rule. For example, this method was 
employed for object recognition and motion anticipation in 
[19]. Popular for classical neural networks training algorithm 
EBP (Error Back Propagation) is not available for threshold 
based spike neurons. But it is possible to use Extreme 
Learning Machine (ELM) for training of classical feed 
forward neural network (or Multi Layer Perceptron) with one 
hidden layer (ELM) [20] or more (Hierarchical ELM) [21], 
[22] with threshold based neurons, and therefore to train spike 
neural network with hidden layers. Basic principle of ELM is 
training of only output layer and determination of weights in 
hidden layers randomly. If the learning of neural network is 
conducted basically previously in host computer it is possible 
to use genetic algorithms to train our network. 

For our model we offer to employ some modified STDP 
for training of neuron described by follow: 
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where: k – learning rate, 

S(t) – output signal of neuron, 

f(p) – function of weights of past input pulses (decreasing 
in accordance with decreasing of time), p=(t-1, …, Np); 

Ii(p) – input signal (0 or 1) in synapse I in past time p. 

Moments of time p must be limited by enough few number 
Np essentially if this learning is conducted during exploitation. 

This modified STDP method provides more flexible 
capabilities to adapt weights. 

CONCLUSIONS 
 

Proposed in this paper model of spike neuron for hardware 
implementation is similar to suggested earlier leaky-integrate-
and-fire (LIF) neuron model [16], [19]. Our model differs 
from it by another mechanism of refractory period based on 
changing of threshold instead membrane potential. This 
feature provides memory in neuron about past input pulses and 
so expands possible functionality of neuron and neural 
network in whole. 

Previous experiments with software simulation show that 
proposed model may be used for different coding of 
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information: by frequency modulation (with degenerative 
feedback in neuron) and representation of any event by single 
pulse.  

Proposed in this paper model of spike neuron and neural 
networks is implementing now by program simulation in C++ 
and in Python for large number of neurons. Usage and 
verification of it is planned in tasks of computer vision (object 
recognition) and navigation of mobile robots. 

Further plans are dealing with implementation of proposed 
model of neuron and neural networks in FPGA. Hardware 
implementation will allows to solve in real time such complex 
problems with big data as services of data warehouse of 
environment and infectious diseases [23], geoinformation 
technology for assessment of ecological risks [24]. 
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