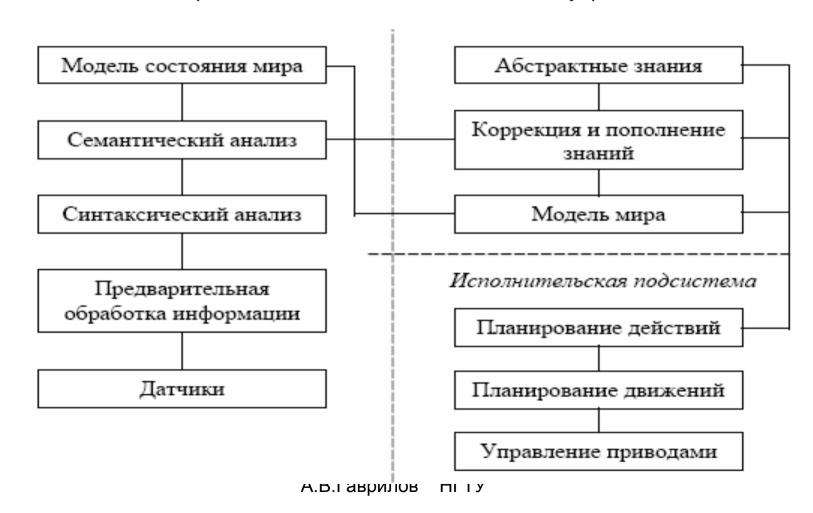
Введение в робототехнику

Лекция 3.
Из чего состоят интеллектуальные роботы?

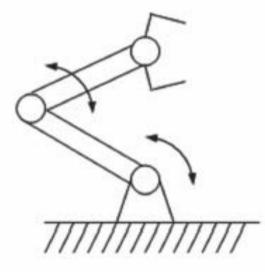

Робот =

- Механика (манипуляторы, движители)
- Сенсорика, датчики или сенсоры (sensors)
- Приводы (актуаторы)
- Система управления
- Система взаимодействия с человеком
- Система взаимодействия с другими роботами (и оборудованием)

Архитектура системы управления робота, основанная на знаниях

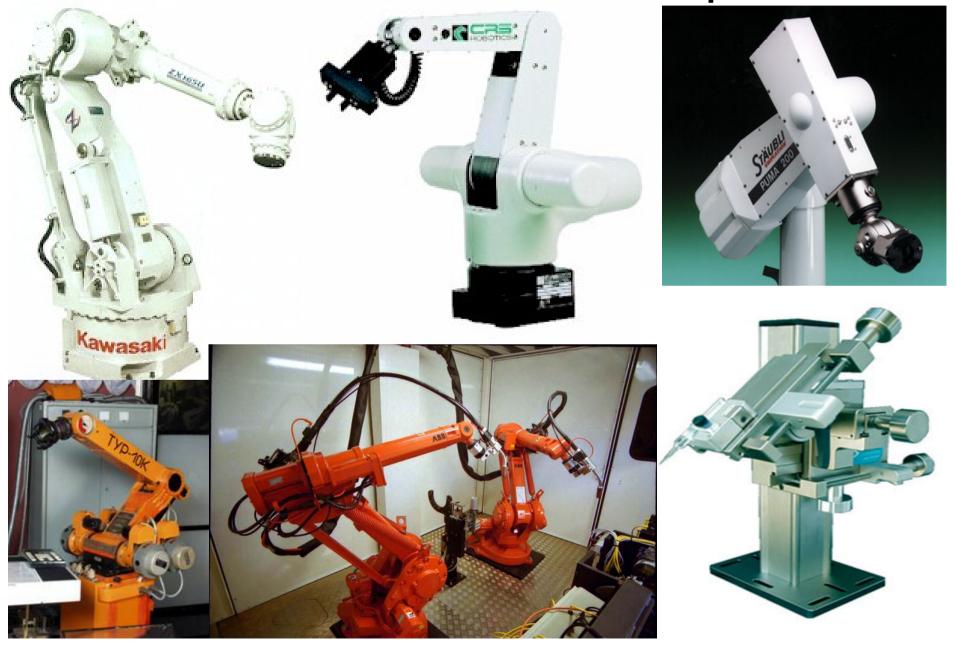
Подсистема восприятия

Подсистема управления знаниями


Что могут делать роботы

ПРОГРАММНЫЕ	АДАПТИВНЫЕ	интеллектные
Загружать или разгружать технологическое оборудование Окрашивать изделия простой формы Резать плоские материалы Манипулировать рабочим инструментом Вести точечную сварку Играть на пианино	Собирать детали в изделие Контролировать качество изготовления Вести дуговую сварку Вести зачистку и шлифование Наносить покрытия на изделия сложной формы Сортировать изделия Перемещаться по заданной траектории Резать материалы сложной формы Переносить хрупкие предметы Мыть окна Выполнять заказы в кафе	Перемещаться по неизвестной местности Отыскивать заданные предметы Находить наружные и внутренние дефекты Распознавать препятствия Зачерпывать горную массу

14 А.В.Гаврилов НГТУ


Механика манипулятора

Манипулятор (промышленный робот)

Разомкнутая последовательность звеньев, начало которой закреплено на основании, а конец (схват) перемещается в пространстве. В соединениях звеньев имеются приводы для поступательного или вращательного перемещений звеньев друг относительно друга

Роботы-манипуляторы

Механика манипулятора (2)

- Сложность кинематической схемы манипулятора характеризуют числом степеней подвижности, в которое обычно не включают степень подвижности захватного устройства
- Степень подвижности это возможность перемещения на плоскости одного звена манипулятора в ту или иную сторону относительно другого звена
- Каждая степень подвижности характеризуется
 - максимальной величиной поступательного или вращательного перемещений,
 - временем перемещения,
 - максимальными скоростью и ускорением перемещения,
 - погрешностью позиционирования,
 - числом программируемых точек на траектории перемещения звена,
 - погрешностью отработки траектории

Механика манипулятора (3)

- Погрешность позиционирования это максимальное отклонение рабочего органа (схвата) от заданной точки при повторении циклов перемещения.
- Для роботов с электроприводом погрешность позиционирования составляет 0,1–0,5 мм.

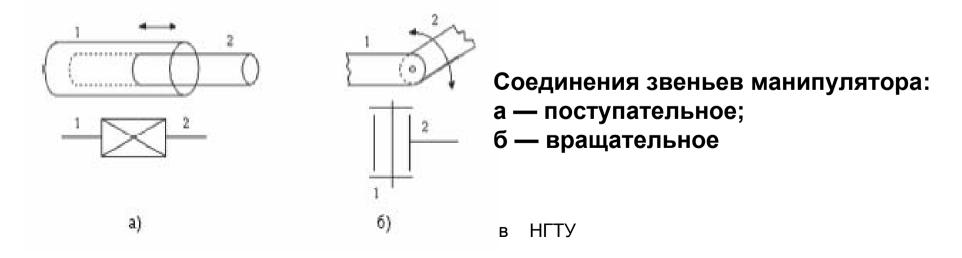
Механика манипулятора (4)

- Погрешность отработки траектории это максимальное отклонение фактической траектории перемещения рабочего органа между точками А и В от траектории, заданной программой управления
- Рабочая зона это пространство, в котором может находиться рабочий орган манипулятора или робота. Она зависит от размеров звеньев, их перемещений и кинематической схемы манипулятора.

Механика манипулятора (5)

- Захватное устройство характеризуется
 - усилием захватывания,
 - временем захватывания,
 - временем отпускания,
 - максимальным и минимальным размерами объекта манипулирования.

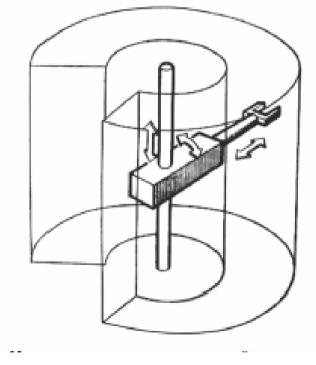
Кинематика манипулятора



Транспортные (X,Y,Z) и ориентирующие (ax, ay, az) степени подвижности манипулятора

А.В.Гаврилов НГТУ

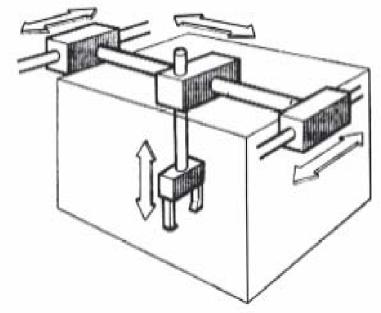
Кинематика манипулятора (2)


• Два соседних звена образуют кинематическую пару. В зависимости от комбинации соединений звеньев возможно множество кинематических схем манипуляторов.

Системы координат

• Цилиндрическая система координат реализуется двумя поступательными и одной вращательной кинематическими

парами



Системы координат (2)

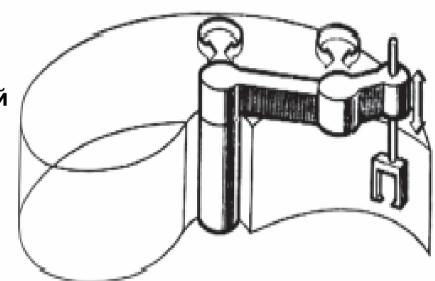
 Сферическая (полярная) система координат реализуется двумя вращательными и одной поступательной кинематическими парами

Системы координат (3)

• Прямоугольная (декартова) система координат реализуется тремя поступательными кинематическими парами

Системы координат (4)

 Угловая (ангулярная) система координат реализуется тремя вращательными кинематическими парами при шарнирном соединении звеньев манипулятора

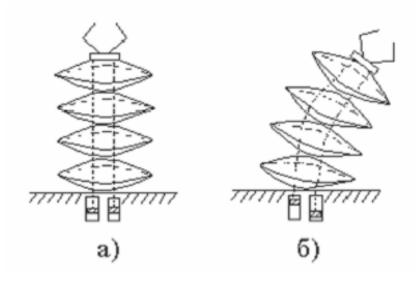

Другие нетрадиционные кинематические схемы

- Селективная податливая рука сборочного робота (SCARA Selective Compliance Assembly Robot Arm) изобретена X. Макино (университет Яманаси, Япония).
- Звенья манипулятора взаимно поворачиваются в одной плоскости, а рабочий орган совершает поступательные движения вверх или вниз

Кинематическая схема SCARA

В такой конструкции сочетаются свойства схем в угловой и цилиндрической системах координат.

За счет жесткости конструкции в вертикальном направлении манипуляторы SCARA могут нести повышенные нагрузки на рабочем органе. Высокая точность позиционирования рабочего органа и большая рабочая зона позволяют особенно эффективно применять компоновку SCARA при сборке.

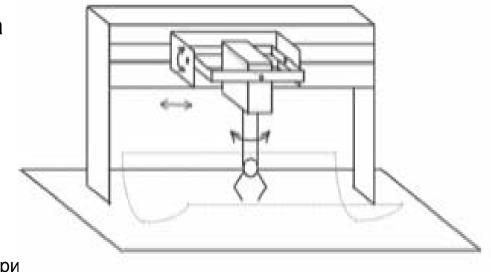


Кинематическая схема SPINE

 Манипулятор SPINE состоит из множества чечевицеобразных стальных дисков, стянутых друг с другом двумя парами тросов

а — тросы натянуты одинаково;

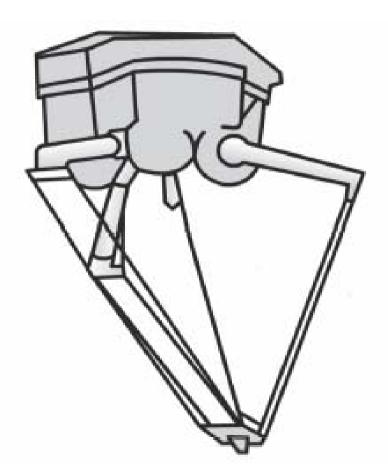
б — тросы натянуты по-разному



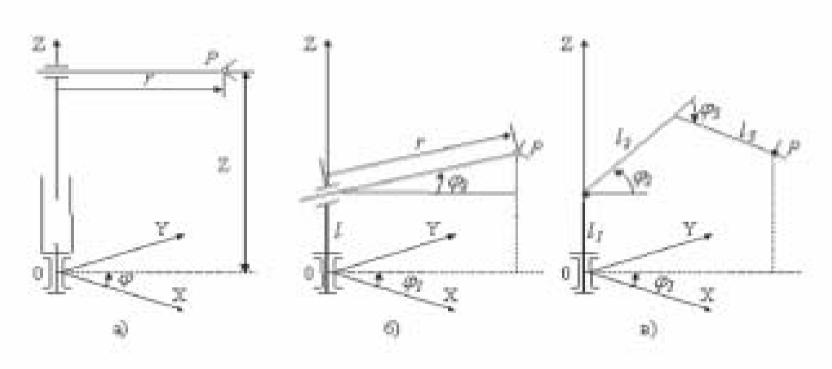
А.В.Гаврилов НГТУ

Кинематическая схема ASEA

• Манипулятор ASEA напоминает маятник с карданным подвесом относительно продольной и поперечной осей


При скорости движений в 1,5 раза больше, чем у традиционных манипуляторов, погрешность позиционирования составляет около 0,1 мм.

Компоновка манипулятора FlexPicker (ABB Automation (Швеция-Швейцария)


На осях четырех серводвигателей с общим управлением имеются диски, к каждому из которых прикреплена кинематическая пара с вращательным соединением звеньев.

Свободные концы звеньев каждой пары соединены в одной точке, к которой прикреплено захватное устройство.

А.В.Гаврилов НГТУ

Кинематические модели манипуляторов

Кинематические модели манипуляторов: а — цилиндрическая система координат; б — сферическая система координат; в — угловая система координат

Уравнения кинематики манипулятора. Координаты рабочего органа Р на оси координат *Хр, Үр, Zр*

Цилиндрическая система (рис. 1.17, а): $X_p = r \cdot \cos \varphi; Y_p = r \cdot \sin \varphi; Z_p = Z.$ (рис. 1.17, б): $X_n = r \cdot \cos \varphi_1 \cdot \cos \varphi_2; Y_n = r \cdot \sin \varphi_1 \cdot \cos \varphi_2; Z_n = 1 + Z \cdot \sin \varphi_2.$ (DRC. 1.17, B): $X_n = l_2 \cdot \cos \varphi_1 \cdot \cos \varphi_2 + l_3 \cdot \cos \varphi_1 \cdot \cos (\varphi_3 - \varphi_2);$ $Y_p = l_2 \cdot \sin \varphi_1 \cdot \cos \varphi_2 + l_3 \cdot \sin \varphi_1 \cdot \cos (\varphi_3 - \varphi_2);$ $Z_p = l_1 + l_2 \cdot \sin \varphi_1 + l_3 \cdot \sin (\varphi_3 - \varphi_2)$.

Прямая и обратная задачи кинематики

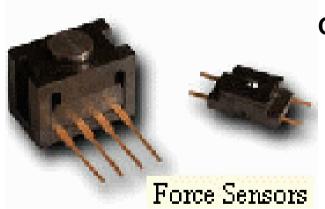
- При решении прямой задачи задают относительные перемещения звеньев манипулятора, для которых рассчитывают положение его рабочего органа в пространстве. Расчеты ведут с целью определения рабочей зоны робота для заданных размеров и перемещений звеньев, а также оценки погрешности позиционирования рабочего органа и отработки траектории при заданных погрешностях перемещений звеньев манипулятора определенного размера.
- В обратной задаче, наоборот, задают координаты рабочего органа в пространстве, для которых рассчитывают относительные перемещения звеньев манипулятора. Если прямую задачу решают при изготовлении манипулятора, то обратную задачу решают на месте эксплуатации манипулятора, когда задано положение технологи ческого оборудования и требуется вывести рабочий орган манипулятора в заданную точку

Прямая и обратная задачи кинематики (2)

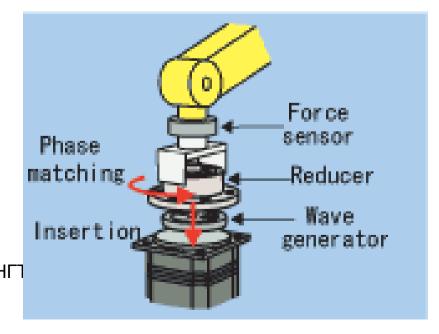
- Сложность решения прямой и обратной задач заключается в том, что параметры движения каждого звена зависят не только от его привода, но и от движений предыдущих звеньев.
- Кроме того, каждое соединение звеньев имеет свою систему координат, которую надо привести к системе координат рабочего органа.
- Особенно сложно рассчитывать скорости и ускорения движения звеньев и рабочего органа с учетом переменных нагрузок, сил инерции и трения.
- Если прямая задача кинематики имеет однозначное решение, то вывод рабочего органа манипулятора в заданную точку пространства в обратной задаче кинематики возможен при разных перемещениях звеньев

 X_{2}, Y_{2}, Z_{2} X_{1}, Y_{1}, Z_{1} X_{3}, Y_{3}, Z_{3}

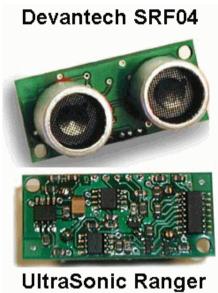
А.В.Гаврилов

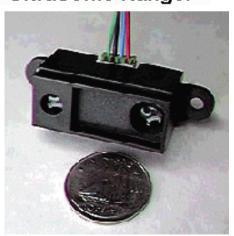

Неоднозначное решение обратной задачи кинематики манипулятора

Сенсоры (датчики)



Акселерометр, использующий пьезоэффект



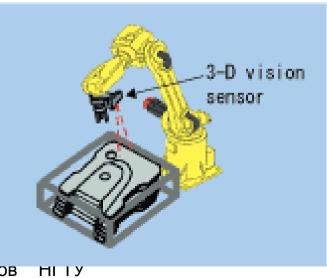

Сенсор усилий

А.В.Гаврилов НГТ

Сенсоры (2)

Ультразвуковой дальномер

Робот «Коала»


Инфракрасный дальномер

А.В.Гаврилов НГТУ

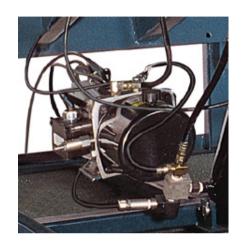
Сенсоры (3)

• Видео сенсор

А.В.Гаврилов нг г

Двигатели для роботов:

- Пневматические
 - Были у первых роботов
- Гидравлические
 - Обеспечивают большую грузоподъемность (более 50-100 кг)
- Электрические
 - Наиболее универсальные и легко управляемые



А.В.Гаврилов

Электродвигатели для роботов:

- Двигатели постоянного тока
 - с редуктором
 - без редуктора,
- Шаговые двигатели
 - Обеспечивают точное позиционирование на заданное количество шагов
- Сервомоторы
 - Электродвигатели с обратной связью, обеспечивающие точность углового позиционирования, скорости и ускорения

Двигатели (actuators)

Гидравлический двигатель

Пневматический двигатель

Пневматический цилиндр

Электрадвидения почтоянного тока

Шаговый электродвигат ель

Серво двигатель

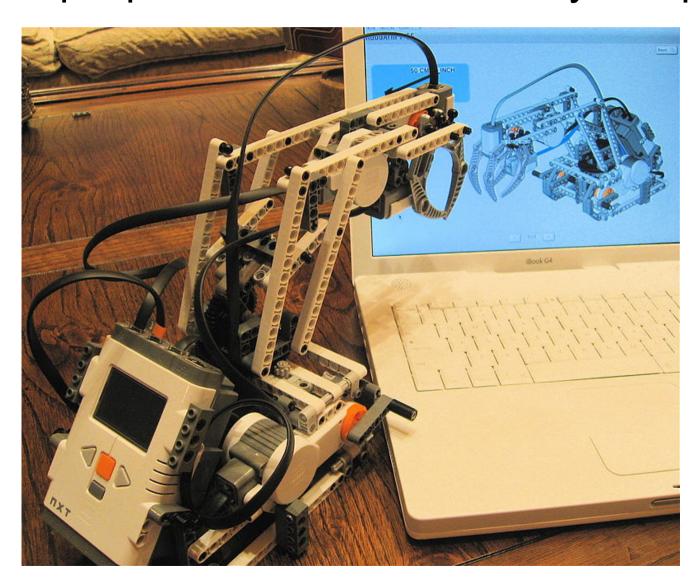
Структура задач, решаемых системой управления мобильного робота

Набор Mindstorms LEGO NXT. Микрокомпьютер(Контроллер)

Набор Mindstorms LEGO NXT. Сенсоры

Сенсор звука

Сенсор расстояния Сенсор освещенности Серво мотор-тахометр (ультразвуковой сенсор) Сенсор касания



Набор Mindstorms LEGO NXT. Примеры роботов. Робот для игры в гольф

Набор Mindstorms LEGO NXT. Примеры роботов. Робот-манипулятор

Робот РОР ВОТ на базе платформы Arduino

Робот РОР ВОТ на базе платформы Arduino (2)

А.В.Гаврилов НГТУ