Development of Games

Lecture 1 Introduction

Outline

- About course
- What is computer game
- Game loop
- Structure of Game
- What is engine
- Topics around Games
- Career connecting with Games
- Kinds of Games

Purpose of course

 The objective of the course is to introduce the students to a principles, methods and algorithms using in development of games, in particular, in special parts of graphics and AI in games.

What do you need to know

- Be able to write programs in C++ or Delphi or Java
- Basic Al

Course Evaluation

- Midterm exam: 1 exam 20%
 - Obligatory condition for attendance and passing:
 - Attendance of lectures (no less than 70%)
 - Evidence of successful work under project if project is game then at least concept of project and functional specification
- Final Exam: 1 exam 40%
 - Obligatory condition for attendance and passing:
 - Attendance of lectures (no less than 70%)
 - Presentation on completed project
- Term Project: 1 project 40%
- Total 100%

Schedule

- Lectures
 - Monday, 9-00, room 103
- Consultations on lectures and project
 - Monday, 14-00, room B08
 - Or short questions by email

avg@oslab.khu.ac.kr

Information about ftp-server will be later

More details in syllabus

Possible themes of projects

- Implementation of determined fragment of any game using animation
- Development of technical project of game
- Development of game by team of students with different roles
- Development of game without animation and strong graphic
- Development of simulation of face with emotions
- Development of game for mobile phone
- Development of game in Internet

Terms

- Game
 - Goal
 - Devices
 - Gameplay
 - Usually opponent
 - Criterion of won
- Video Game
- Computer Game
- Mobile Game
- Digital Game

Different views on computer game?

- Program product
- Custom
- Art
- Source of training
- Source of knowledge
- Entertainment

What is a Game? (1 of 3)

- Movie? (why not?)
 - \rightarrow no *interaction*, outcome fixed)
- Toy? (why not?)
 - \rightarrow no *goal*, but still fun)
- Puzzle? (goal + interaction ... why not?)
 - \rightarrow strategy and outcome is the same each time
- Definition:
- "A computer game is a software program in which one or more players make decisions through the control of game objects and resources, in pursuit of a goal."

What is a Game (2 of 3)

- A Computer Game is a Software Program
 - Not a board game or sports
 - Lose: 1) physical pieces, 2) social interaction
 - Gain: 1) *real-time*, 2) *more immerse*, 3) *more complexity*
 - Ex: chess vs. soccer vs. warcraft
- A Computer Game involves Players
 - The game is not for *you* but for *them.*
 - Ex: complicated flight simulator but audience is beginner

What is a Game (3 of 3)

- Playing a Game is About Making Decisions
 - Ex: what weapon to use, what resource to build
 - Can be frustrating if decision does not matter
- Playing a Game is About Control
 - Player wants to impact outcome
 - Uncontrolled sequences can still happen, but be sparing and made logical
 - Ex: *Riven* uses train system between worlds
- A Game Needs a Goal
 - Ex: Defeat Ganandorf in Zelda
 - Ex. Survive in Age of Empire
 - Long games may have sub-goals

What a Game is Not (1 of 2)

- A bunch of cool features
 - Necessary, but not sufficient
 - May even detract, if not careful, by concentrating on features not game
- A lot of fancy graphics
 - Games need graphics just as hit movie needs special effect
 ... but neither will save weak idea
 - Again, may detract
 - Game must work without fancy graphics
 - Suggestion: should be fun with simple objects
- "When a designer is asked how his game is going to make a difference, I hope he ... talks about gameplay, fun and creativity as opposed to an answer that simply focuses on how good it looks" Sid Meier (Civilizations, Railroad Tycoon, Pirates)

What a Game is Not (2 of 2)

- A series of puzzles
 - All games have them
 - But not gameplay in themselves
 - Puzzles are specific, game systems spawn more generic problems
- An intriguing story
 - Good story encourages immersion
 - But will mean nothing without gameplay
 - Example: Baldur's Gate, linear story. Going wrong way gets you killed. But not interactive. Interaction in world all leads to same end.

Games are Not Everything

- Most important ... is it fun?
- Computers are good at interactivity
 - Allow for interactive fun
 - Interactive Media and Game Development ©
- Examples:
 - SimCity
 - Grim Fandango, good visuals, story, etc. But need to do puzzles to proceed. Could have skipped to just watch story. Would still have been *fun* without game.

Overview of Gameplay

- Game theory branch of economics in which systems governed by rules are mathematically analyzed to determine payoffs of various end points.
- *Gameplay* collective strategies to reach end points
- Note, gameplay is not everything
 - Choice of car in GTA is not always about payoff, but about what is *fun*
 - Software doesn't have to have gameplay to be entertaining ... consider SimCity
- No one expects gameplay in movies or plays
 - "Hey, where is the gameplay in Hamlet?"
 - Rule 1: It should be fun (entertainment)
 - Rule 2: It should be interactive (make use of computer, else perhaps use film)
 - Rule 3: It can have gameplay (but that is choice) Andrey V.Gavrilov, Kyung Hee University

Gameplay Example (1 of 2)

- Adventure game: knight, dwarf, priest, thief
- During combat, knight and dwarf in front, thief fires arrows
- Priest casts spells (all cost the same)
 - E-bolts (do damage equal to sword)
 - Band-aids (heal equal to sword)
- Which to cast?
 - Ask: against single opponent (they are equal)
 - Ask: against opponent with 6 arms (bolts)
 - Ask: against many opponents with weak attacks (band-aids)
 - \rightarrow Can always decide which is better
 - Not so interesting y V.Gavrilov, Kyung Hee University

Gameplay Example (2 of 2)

- Now, suppose
 - Band-aids still affect single target but ebolts are area affect in radius
 - E-bolts do less damage, but armor doesn't make a difference
- Now, which to cast?
 - Answer isn't as easy. Interesting choices.
 Good gameplay.

"A game is a series of interesting choices."

- Sid Meier (pirates, civilization...)

Game loop

- Starting the Game
- Player Input
- Updating Game Internals
- Main playing process
 - Displaying of screen
 - One time with updating during playing
 - Many times for different processes
 - Interaction with user
- Ending the Game
- Conclusion

Typical Game Sections

- Game startup
 - Initialize variables
 - Set up data structures
 - Allocate memory
 - Load graphics and sound files
- Game enters main loop or exits to OS
- User is prompted for input
- User input retrieve

Game Sections - 2

- Game state updated based on user's last input
- Based on last player action AI is applied, collisions processed, objects move
- Once player logic processing is complete, background animation performed, music, sound effects, and housekeeping performed

Game Sections - 3

- Current animation frame is rendered (drawn to virtual buffer)
- Program displays frame by copying buffer to screen
- Frame display rate locked to 30 fps
- Exit section (game over)
 - Release resources
 - Restore system settings
 - Exit to OS

Typical structure of computer game

The Parts

- It's often hard to break up a game into distinct parts, because there is usually too much overlap to separate them. But, here are four broad components:
- Game Engine
- Rules and Mechanics
- User Interface
- Content and Challenges

Game Engines

Sometimes when a developer or player uses the term "engine" they really mean "graphics engine". But a game engine encompasses much more. Game engines:

- Power the graphics and sound
- Power the AI
- Power the physics and interactions in the game
- Describe the nature of the game space
- Define the parameters of game objects
- Define the space of possibilities in the game world

Game Engines: Graphics

 Includes the low level computational instructions for how things are drawn on the screen.

- Contains routines for manipulating images.
- Defines the graphical capabilities of the game.

Game Engines: Physics

- A (idealized) physics engine defines what physical attributes objects and the world itself can have, but not the precise values or effects of those attributes.
- A physics engine may specify that:
- There is a gravity force.
- Objects have friction constants.
- The ways in which water can deform.
- The computation routines by which objects interact.

A physics engine does not (necessarily) specify that:

- Gravity is G, or g, or even inverse square.
- The specific friction constants of objects.
- The specific result of dropping a ball into water.
- The specific routines called by particular interactions.

General Game Engines

A game engine specifies the *space of possibilities* for a game, but not the *specific parameters* of elements of that game.

Some components of the Super Mario Bros. "engine":

- Levels are fixed height scrolling maps.
- Levels are populated by blocks and enemies.
- Mario (and Luigi) can be small, big, or fiery.
- Blocks are affected by being bumped from below.
- Enemies are affected by being stomped, bumped from below, or hit by enemies or projectiles.
- Enemies have different movement/AI schemes.
- Enemies can spawn projectiles or other enemies.

Characteristics of an Engine

- Is broad, adaptable, and extensible.
- Firmly encodes all non-mutable design decisions.
- Allows parameters for all mutable design decisions.
- Should outline the gameplay and challenge possibilities.
- Determines the overall game architecture.
- Is coded so that new design decisions leave it unchanged.

Rules and Mechanics

- Specific decisions about game parameters, obstacles, and abilities determine the rules and mechanics of the game. This includes things like:
- Player abilities
- Enemy stats
- Enemy behaviour
- Spell details
- Jumping height
- Gravity strength
- Point values
- Interplay between game objects

While the overall challenges aren't determined here, the heart of gameplay is in mechanics.

Rules: Super Mario Bros.

Some rules from Super Mario Bros:

- One kind of block is the "question" block. A question block, when bumped, yields either a coin, 10 coins, a power-up, or a star.
- If Mario triggers a power-up when small, it is a mushroom. When big or fiery, it is a fire flower.
- Goombas die when stomped.
- Turtles become shells when stomped or bumped.
- 100 coins yields an extra life.
- Spinys damage Mario when stomped.
- Piranha Plants aim fireballs towards Mario.

Rules and Mechanics (cont'd)

- If we continue the D&D analogy, then engine + mechanics = core rulebooks.
- Engine and mechanics still doesn't make a whole game.
- Al is part of the mechanics.
- If you have the engine and the mechanics, you should be able to make a level editor or game toolset.
- Takes the space of possibilities, and makes *decisions* for all parameters

Interfaces

- The engine and mechanics tells us what the player and other objects in the game can do.
- The interface tells us how the player does things, and how she knows what's happening in the game.
- Interfaces thus have two parts:
 - Player-to-Computer
 - Computer-to-Player
- The interface is the center of the user experience.
- In the D&D analogy, the interface is character sheets, maps, dice, pencils, and the voices of the players and the Dungeon Master.

Interface Tips

- On the PC, your inputs are mouse and keyboard. This affects not just the interface, but the design itself.
- Carefully consider the depth and width of your interface.
- Details are best processed at the center of vision.
- Peripheral vision mostly detects motion.
- Enhance your interface with sounds.
- Familiarity is better than innovation in interface.
- Strive for an "invisible" interface, but metaphorically.

Content and Challenges

Content is everything we haven't discussed yet. We can dived it into two types: gameplay and non-gameplay.

Non-gameplay content includes:

- Graphics
- Sound Effects
- Background Music
- Cut Scenes
- Story
- Flavor Text
- Dialogue

To be fair, many of these have deep gameplay implications, and should be considered at other stages.

Gameplay Content

When developers speak of content, they often mean gameplay content:

- Goals and victory conditions
- Missions and quests
- Level design
 - Pacing and Atmosphere
 - Difficulty curves and Balance
 - Reward structure
 - Atmosphere and Harmony
- In the D&D analogy, "modules" (adventures), and the DM's imagination are the content.

Why the division?

- These four components Engine, Mechanics, Interface, and Content are not created sequentially, or separately. But thinking about them will keep your organized.
- Understanding the *Engine* tells you what decisions must be made early, and what should be hard-coded.
- Understanding the *Mechanics* tells you what design decisions may need changing and should be mutable.
- Understanding the *Interface* allows you to shape the user experience to fit your game vision.
- Understanding the *Content* ensures that your create the right world and gameplay for your game.

Areas related with Games

Three Major Areas

- Humanistic Study (Art, Entertainment, Source of training, Source of knowledge)
- Game Technology (Program product, Art)
- Game Business (Custom, Program product)

Topics in Study of Games

- Humanistic Study:
 - Critical Game Studies
 - Criticism, Analysis and History of electronic and non-electronic games
 - Games and Society
 - Understanding how games reflect and construct individuals and groups

Technical Study of Games

- Game Design
- Game Programming
- Visual Design
- Audio Design
- Interactive Storytelling

Process & Management

Game Production

- Practical challenges of managing the development of games
- Game Business
 - Economic, legal and policy aspects of games

Career in Game Industry

- Scholarly/Academic
 - Game Studies Scholar/Educator
 - Game Technology Educator
 - Game Journalist
- Applied
 - Game Artist
 - Game Programmer
 - Game Designer
 - Game Producer

Requirements to Game Studies Scholar and Educator

- Trained in History, Analysis, Criticism
- Experienced Gamer
 - Knows Genres, Designs
 - Understands Technology
- Familiar with Industry
 - Understands Dev. Process
 - Knows gist of Business & Legal

Requirements to Game Technology Educator

- Trained in Design and Development
- Experienced Programmer
 - Knows Mechanics, Dynamics
 - Hardware Strengths & Limitations
- Emphasizes Good Process
 - Software Dev. Best & Worst Practices
 - Group Work, Creativity Management

Requirements to Game Journalist

- Trained in Design, Analysis, Criticism
- Expert Communicator
- Investigator of Game Culture
 - Non-Digital, PC, Console, Online
 - Visual Aesthetics, Narrative Theory
 - Social Issues (Gender, Violence)
 - Technical trends, research, novel implementations

Requirements to Game Programmer/Artist

- Trained in Design, Analysis, Tech
- Experienced Procedural Thinker
- Specialization Expert
 - Graphics Programming
 - Audio Design & Implementation
 - Concept Art, 3D design & Rendering
 - Level Design and Game Mechanics
 - Character Design, Behavior, Artificial Intelligence

Requirements to Game Designer

- Trained in Design, Analysis, Tech
- Experienced Procedural Thinker
- Expert Communicator
 - Narrative and Experience goals
 - Visual & Audio Aesthetics
 - Practical Nuts & Bolts
 - Example: Thief

Requirements to Game Producer

- Trained in Biz & Management
- Experienced Procedural Thinker
- Expert Communicator
 - Team structure and goals
 - Time, Budget and Design constraints
 - Markets, Promotion, Publication
 - Legal issues

Bit of history of games

- 1962: Spacewar for the DEC PDP-1
- 1972: Pong, Magnivox Odessy
- 1985: Nintendo
- 1990: 3D (First Person Shooters)
- 2000: Games = \$\$\$
 - Over 30 million consoles in homes
 - Over 20 million PC gamers

New game categories over time

- 1981: Dungeons and Dragons
- 1982: Flight Sims
- 1986: Chess
- 1988: Sports simulations
- 1989: God games
- 1993: Shooters
- 1994: Interactive movies

- 1997: MMO's
- 1999: Dance games
- 2000: Dollhouse games
- 2001: Living city games
- 2002: "Casual" games
- 2005: Pet games
- 2005: Music games

Kinds of games (tasks)

• Shooter

- Doom, Quake, Unreal Tournament, Mortal Combat,

- Strategy
 - Civilization, Simcity, Tycoon, Warcraft, Starcraft, Capitalism, Europe, Master of Orion, Sudden Strike, Empire of Earth, Airport
- Quest
- Intelligent game
 - Chess, Go, Manjong, Playing cards, Games with words, Puzzles
- Simulator
 - F-18, F-117, Battle for Britain, Airplane, Billiard,
- Simulator without participation of user
 - Robots

Kinds of games (using of time)

• Turn-based

- Civilization, Capitalism, intelligent games

• Real time

- Sudden strike, warcraft, spacecraft, simulators

Kinds of games (using of communication)

- Autonomous games
 - For PC
 - For Play Stations
- On-line games with computer in Internet
- On-line games with other users in local network/intranet
- Mobile Games
- Mobile Games in Internet

For More Information

- Resources
 - www.igda.org
 - www.gamasutra.com
- Journalism
 - www.edgeonline.com
 - www.gamegirladvance.com