
Development of Games

Lecture 15, part 2
Game trees, rules and other methods

of knowledge representation and
inference

Andrey V.Gavrilov
Kyung Hee University

2

Outline

• Game trees
• Rules
• Finite state machines
• Pathing

Andrey V.Gavrilov
Kyung Hee University

3

Game Tree Search
• View moves in game as decomposition

operators.
• The nodes in the search space are positions.
• The edges in the search space are the moves

we use to get there.
• Perform a search of the state space.
• Our aim is to win.
• In practice space is too large to search

completely - normally search to a fixed depth.

Andrey V.Gavrilov
Kyung Hee University

4

Heuristic
• We can’t search entire space for a win, so we need to

estimate how good a position is for us.
• Evaluation function estimates how good positions are

for us.
• Assume positions which are good for us are bad for our

opponent and vice versa:
– positions with the highest (i.e. maximum) evaluation

are best for us,
– positions with the lowest (i.e. minimum) evaluation

are best for our opponent.

Andrey V.Gavrilov
Kyung Hee University

5

An Example Evaluation
Function

• For example in noughts and crosses, score
– 1000 if we win, -1000 if we lose,
– 100 if we have centre, -100 if opponent has centre
– 10 for each corner we have, -10 for each corner opponent

has,
– 5 for each edge we have, -5 for each edge opponent has.

Score for X is 100 (centre)
+ 10 (corner) - 10
(opponent corner) - 5
(opponent edge) = 105.

Andrey V.Gavrilov
Kyung Hee University

6

Shallow Search

• In a given position, the computer can choose next
move by:
– generating all successor positions which can be

reached in one move from the given position,
– applying evaluation function to each of them,
– playing move which leads to successor position

with highest value of evaluation function.

• For example...

Andrey V.Gavrilov
Kyung Hee University

7

105 105 100 100 100

• The computer (X) would play either of these 2 moves
(and the heuristic does not say which).

• But if it plays the second of them, it will lose.

Andrey V.Gavrilov
Kyung Hee University

8

More Search

• The computer fell into a trap because it
didn’t take account of the moves its
opponent could make.

• We would like to find a way to give the
second position a lower heuristic value.

• So, let’s look at the original position
again and search deeper in the move
tree:

Andrey V.Gavrilov
Kyung Hee University

9

Searching deeper

110 110 110 -905

What should
the heuristic
value of this
position be?

MAX

MIN

Andrey V.Gavrilov
Kyung Hee University

10

Adjusting Evaluation Function
• Now, how good is the circled position for X?
• What is its heuristic value?
• It is O’s move in this position.

– Assume O will play the move which gives the best
position for O.

– Assume O uses the same evaluation function as X.
– Then O will pick the win, with evaluation -905.

• So X adjusts the evaluation function of the circled
node to -905
– which is the minimum of 110, 110, 110, -905.

Andrey V.Gavrilov
Kyung Hee University

11

• We may need to look even deeper:
– after the following sequence of moves:

…the computer would continue by playing
in the corner, since that gives the
highest heuristic value (90).

…but now O trivially
wins by playing in
the other corner.

Andrey V.Gavrilov
Kyung Hee University

12

Minimax

• Minimax algorithm searches to a fixed depth.
• Adjusts evaluation of positions depending on what

the other player can do next:
– Draw state space tree to fixed depth.
– Root node is “ours” - we will pick child which has

highest score for us. Call this a max node.
– Immediate children of root node, i.e. at 1st level

belong to opponent who wants to pick move with
worst i.e. lowest score for us. Call this a min node.

Andrey V.Gavrilov
Kyung Hee University

13

• Continue down through levels like this,
alternating min nodes with max nodes.

• Calculate evaluation function only at
leaf nodes. max

min

max

10 6 -2 2 -8 -7 20 100

Andrey V.Gavrilov
Kyung Hee University

14

Propagating Evaluation
• At the max nodes immediately above the

leaves, the player there will choose the move
giving maximum evaluation.

• The heuristic value of each of these nodes is
the maximum of the values of its children:

max
min

max

10 6 -2 2 -8 -7 20 100

10 2 -7 100

Andrey V.Gavrilov
Kyung Hee University

15

Propagating Evaluation
• At the min nodes at the next level, the player there will

choose the move giving minimum evaluation.
• The heuristic value of each of these nodes is the

minimum of the values of its children:

max
min

max

10 6 -2 2 -8 -7 20 100

10 2 -7 100

2 -7

Andrey V.Gavrilov
Kyung Hee University

16

Propagating Evaluation
• Finally, the top node is a max node.
• The heuristic value of the top node is the

maximum of the values of its children:
max
min

max

10 6 -2 2 -8 -7 20 100

10 2 -7 100

2 -7

2

• The computer will play the move which
leads to this maximum value.

Andrey V.Gavrilov
Kyung Hee University

17

Calculating Minimax
• Consider a node n in the search tree.

– IF n is at bottom of tree, then h(n) = eval(n), where
eval is our simple evaluation function.

– If n is a MIN node with e.g. 3 children a,b,c, then
h(n) = minimum of h(a), h(b), h(c).

– If n is a MAX node with e.g. 3 children a,b,c, then
h(n) = maximum of h(a), h(b), h(c).

• The selected move is the move at the root node which
has the highest value of h.

Andrey V.Gavrilov
Kyung Hee University

18

Alpha-beta
• Alpha-beta is an optimisation of minimax.
• Maintains cutoff values, called alpha and beta, at

each node which allows some parts of the search
space to be pruned.

• Performance depends on order in which positions are
evaluated.

• Alpha-beta is the algorithm used in most game-
playing programs.

• Pseudo code in
http://www.xs4all.nl/~verhelst/chess/search.html

http://www.xs4all.nl/~verhelst/chess/search.html

Andrey V.Gavrilov
Kyung Hee University

19

Where Alpha-Beta Fails
• Alpha-beta is widely used but not always appropriate:

– In some games the search space is too big, e.g. in
Go there are hundreds of moves to consider at
each level in the search.

– In some games (e.g. Go) it is hard to get a
reasonable evaluation of a position.

– Most card games, e.g. poker, bridge (for both the
above reasons).

– Psychological games.

Andrey V.Gavrilov
Kyung Hee University

20

Rules
Rule - (I, A, P, A->B, F)
• I – identifier of rule (number or name)
• A – area of using of rule
• P – condition using of rule
• A – condition of rule
• B – conclusion of rule
• F – tail conditions (any comments or

additional actions)
• A->B – core of rule, may be different kinds

of interpretation

Andrey V.Gavrilov
Kyung Hee University

21

More simple rules

Rule - (I, A->B)
• May be implemented in games as table

Andrey V.Gavrilov
Kyung Hee University

22

Examples of possible rules in
Games

• If resource=oil and resource=steel and
knowledge=combustion and access=sea
then opportunity_of_build=ship

• If my_force<enemy_force – level_of_spirit
then attack

• If enemy_unit_defeated then
level_of_spirit + delta

• If destroyed > 70% then go_to_repair

Andrey V.Gavrilov
Kyung Hee University

23

Kinds of interpretation of rule
• Logical

– A – logical function with &,V, not
– If one is true then rule are executing

• Probabilistic
– A – logical function with &,V, not
– Rule are executing with any probability

• Threshold
– A - set of features, which are adding with

weights and rule are executing if addition is
more then any threshold (as in model of
neuron)

Andrey V.Gavrilov
Kyung Hee University

24

Kinds of inference

• Backward chaining
– From goal to facts (as in Prolog or as in top-

down method of grammatical analyzing)
• Forward chaining

– From facts to goal (as in bottom-up method of
grammatical analyzing)

Andrey V.Gavrilov
Kyung Hee University

25

Forward chaining inference
match-resolve-act cycle

The match-resolve-act cycle is the algorithm performed by
a forward-chaining inference engine.
It can be expressed as follows:

loop
1. match all condition parts of condition-action rules against working memory

and
collect all the rules that match;

2. if more than one match, resolve which to use;
3. perform the action for the chosen rule

until action is STOP or no conditions match

Step 2 is called conflict resolution. There are a number of conflict resolution
strategies.

Andrey V.Gavrilov
Kyung Hee University

26

Conflict resolution strategies
Specificity Ordering

If a rule's condition part is a superset of another, use the first rule since
it is more specialized for the current task.

Rule Ordering
Choose the first rule in the text, ordered top-to-bottom.

Data Ordering
Arrange the data in a priority list. Choose the rule that applies to data that
have the highest priority.

Size Ordering
Choose the rule that has the largest number of conditions.

Recency Ordering
The most recently used rule has highest priority. The least recently used
rule has highest priority. The most recently used datum has highest
priority.
The least recently used datum has highest priority

Context Limiting
Reduce the likelihood of conflict by separating the rules into groups,
only some of which are active at any one time. Have a procedure that
activates and deactivates groups.

Andrey V.Gavrilov
Kyung Hee University

27

Backward chaining inference

In backward chaining, we work back from possible conclusions
of the system to the evidence, using the rules backwards.
Thus backward chaining behaves in a goal-driven manner.

Backward chaining uses stack for store current goals (order
of searching of tree) for possibility to select alternative
path in case fail.

Andrey V.Gavrilov
Kyung Hee University

28

When backward chaining is better?

• It is needed to prove one goal, and what is
goal is known preliminary

• Initial number of facts is enough large
• Number of query of facts during inference

is enough small

Andrey V.Gavrilov
Kyung Hee University

29

When forward chaining is better?

• We preliminary don’t know what will be
decision from several possible (its may be
strongly differ between them)

• Part of time for dialog (query of facts) is
relatively small in differ with part for
generation of facts from other sources

• During inference some hypothesis may be
generated

• It is needed to make decision in real time
as answer on appearance of facts

Andrey V.Gavrilov
Kyung Hee University

30

Representation of uncertainty in rules

• Facts with confidence
– Confidence may be (0,1), (-1,1), (0,100),

(0,10)
– Are processing (during checking of condition)

in compliance with formulas of fuzzy logic
• Rules with confidence

– Confidence Conf is corresponding to any
conclusion

– It means that if confidence of condition is 1
(100%), then fact-conclusion is appending to
base of facts with confidence Conf

Andrey V.Gavrilov
Kyung Hee University

31

• Advantages of rules as method for knowledge
representation
– Flexibility
– Possibility of nonmonotonic reasoning
– Easy understandability
– Easy append to knowledge base

• Disadvantages
– Low level of structuring, so it is difficult to explore of

knowledge base
– Orientation on consistent solving of task
– Without special program support may be problems

with knowledge integrity during its expanding
• Disadvantages in Games

– May be too large and to demand many resources

Andrey V.Gavrilov
Kyung Hee University

32

Encoded List Processing
a pattern of behaviours (Cont.)
• A set of pre-recorded patterns or lists of behaviours that they

have either learned from experience or are instinctive.
– A pattern is a sequence of steps we perform to accomplish a

task.
– For example, when you drive to work, school, or your house,

you are following a pattern. You get into your car, start it,
drive to the destination, stop the car, turn it off, get out, and
finally do whatever it is you're going to do.

– Many intelligent creatures have pre-recorded patterns or lists
of behaviours that they have either learned from experience
or are instinctive.

Andrey V.Gavrilov
Kyung Hee University

33

Encoded List Processing
a pattern of behaviours

• Patterns are a good way to implement seemingly
complex processes in game AI.
– In fact, many games today still use patterns for

much of the game logic.
– Simply by using an input array to a list processor.

• An encoded list may have the following set of valid
instructions:
– Turn right * Turn left * Move forward * Move

backward * Sit still * Fire weapon.
– 6^16 different possible patterns or roughly
– 2.8 trillion different behaviors.

Andrey V.Gavrilov
Kyung Hee University

34

Finite State Machines (FSM)
• A finite state machine is a

device, or a model of a device,
which has a finite number of
states it can be in at any given
time and can operate on input
to either make transitions from
one state to another or to
cause an output or action to
take place. A finite state
machine can only be in one
state at any moment in time.

Andrey V.Gavrilov
Kyung Hee University

35

Example of possible finite machine,
described behavior of unit in Game

guard attack defeated

march repairing go to base

Destroyed > 70%
and not_along

Look_enemy

Enemy_is_defeated

Enemy_is_defeated

Came_to_base

Destroyed = 100%

Command
“go”

repaired

Andrey V.Gavrilov
Kyung Hee University

36

Fuzzy State Machines
(FuSM)

• Similar to the FSM except that a given set of
stimuli maps, not only to a specific response,
but also to a set of possible responses.

• Incorporating ideas from fuzzy logic, this
method brings great flexibility into the games
domain.

• This method can therefore generate a variety
of responses to a given set of stimuli.

Andrey V.Gavrilov
Kyung Hee University

37

Fuzzy State Machines
(FuSM) (Cont.)

• For example, “if the opponent is too strong, run
away.” Here the words “too strong” are simple to
judge in terms of true or false and there could be
many possible responses to the situation.

• A variety of methods have been developed to select
an appropriate response, such as
– probability weights, or
– threshold to trigger an action.

Andrey V.Gavrilov
Kyung Hee University

38

Chase Algorithm
• The chase algorithm is a classic example of a

deterministic algorithm.
• the coordinates of the bad guys and the coordinates

of the player as inputs into a deterministic algorithm
that outputs direction changes or direction vectors for
the bad guys in real time.

• If we wanted to reverse the logic and make the bad
guy run then the conditional logic could be inverted or
the outcome increment operators could be inverted.

Andrey V.Gavrilov
Kyung Hee University

39

A* Pathing Algorithm
• A* is an algorithm that allows the computer to work out a

path from A to B (navigating around obstacles). It is
essentially part of graph theory, though you wouldn’t
really believe it if you looked at the code. A* is also used
in chess games, route-finding software and a whole
variety of applications. A* is computationally expensive
though, so be warned!

• Essentially, there is a set of nodes (map locations and a
cost) called OPEN and another set called CLOSED.
Each time through the main loop, you pick out the best
element from OPEN (where "best" means "the one with
the lowest cost"), and you look at its neighbours. You
then put any unvisited neighbours into the OPEN.

• The cost of a node is the sum of the current cost of
walking from the start to that node and the heuristic
estimate of the cost from that node to the goal.

Andrey V.Gavrilov
Kyung Hee University

40

Pseudo code
Insert starting point into OPEN set (it is recommended you use a HEAP

structure for the set).
while the OPEN set is not empty:

Get the “Best” node from the OPEN set (i.e. The one with the least
cost).
Exit from loop if we’re at the goal node
Insert all valid neighbours into the OPEN set (with Distance already
travelled + Heuristic Cost and Direction that the cell was moved into)
Delete the “Best” node from the OPEN set and insert into the
CLOSED

loop
if the OPEN set is not empty, then

Backtrack from goal node to start node using the CLOSED set and
directions.

else
No path is possible

end if

	Development of Games
	Outline
	Game Tree Search
	Heuristic
	An Example Evaluation Function
	Shallow Search
	More Search
	Searching deeper
	Adjusting Evaluation Function
	Minimax
	Propagating Evaluation
	Calculating Minimax
	Alpha-beta
	Where Alpha-Beta Fails
	Rules
	More simple rules
	Examples of possible rules in Games
	Kinds of interpretation of rule
	Kinds of inference
	Forward chaining inference
	Conflict resolution strategies
	Backward chaining inference
	When backward chaining is better?
	When forward chaining is better?
	Representation of uncertainty in rules
	Encoded List Processing a pattern of behaviours (Cont.)
	Encoded List Processing a pattern of behaviours
	Finite State Machines (FSM)
	Example of possible finite machine, described behavior of unit in Game
	Fuzzy State Machines (FuSM)
	Fuzzy State Machines (FuSM) (Cont.)
	Chase Algorithm
	A* Pathing Algorithm
	Pseudo code

