
Development of GamesDevelopment of Games

Lecture Lecture 2020
Game ArchitectureGame Architecture

OutlineOutline

• Tokens
• Initial Architecture
• Development
• Nearing Release
• Postmortem

Game DecompositionGame Decomposition
• Consider: Pong, Frogger, Pac-Man, Missle

Command, Zelda, Virtua Fighter, Warcraft,
Doom …

• What do they have in common?
– All have a player (else a movie or screen

saver)
– All have discrete elements that can be directly

or indirectly manipulated
– Call these tokens

• Note, tokens == objects. Use “tokens”, since not
always 1-to-1 mapping to software objects

Tokenizing PongTokenizing Pong

• Bats, Score, Ball, Walls
– Player moves Bat, changes score so sub-tokens

• Goals, too. Defined by area.
• All games can be tokenized (Pac-Man and Balls! in

Rollings and Morris book)

Ball

Walls
Goals

Player

Bat Score

(Game World
has rest)

Interactions of Tokens (1 of 2)Interactions of Tokens (1 of 2)
• Collisions are common

– Token gets message telling collision occurred
• More interactions than collisions. Try token-token matrix (lower

triangle)
– If impossible, “X”
– If symmetric, square
– If asymmetric, triangles

• Events: Ball-Bat deflection, Wall-Bat stop, Wall-Ball deflection,
Goal-Ball goal event, Goal Score goal event. Note, Score Goal
is “X”

• Allows visual check for interactions.
– See errors, missing interactions
– Maybe unexpected chain reactions (could enhance game,

could be unplayable)

Interactions of Tokens (2 of 2)Interactions of Tokens (2 of 2)
• Game World is token. Included in matrix.

Needs to be informed of some events. Act as
intermediary.
– Also, objects don’t need to know all they may

encounter. Makes it easier to update.
• Ex: Ball hits goal goal generates goal event

to Game world game world generates score
event sends to score score increments total
points
– Could later add team score or high score

object and goal would not need to know

Limitation of Token MatrixLimitation of Token Matrix
• Can get complicated. Consider Pac-Man
• Tokens have one or more states

– Ghosts hunting, hunted, eaten
• Some interactions more complicated

– Pac-Man eats power pill power pill event
– Power pill event ghost goes to hunted, timer

reset
– Hunted ghost eaten eaten event to home base,

calculates how many score (200, 400…)
score to ghost to display

State Machine for Ghost TokenState Machine for Ghost Token
• Token Matrix gives you big picture
• Finite State Machine (FSM) gives you focus on specific

area
• Single token and how rest of world interacts. Ex: ghost

– Hunter – (pill) Hunted
– Hunted – (timer) Hunter
– Hunted – (pill) Hunted (reset timer)
– Hunted –(pacman) Eaten
– Eaten –(resurrect) Hunter

• Eaten would trigger score event. That would appear in
FSM of score token

State Machine for Pac ManState Machine for Pac Man

• Hunted – (power pill) Hunter
• Hunter – (timer) Hunted
• Hunter – (power pill) Hunter (reset)
• Hunted – (ghost collision) Dying
• Dying – (if lives > 0) Reset Level event

else Game Over event
• This is an “open” FSM, meaning can be a

dead-end

State Machine for Game WorldState Machine for Game World

• Shows how FSM
translates to non
game aspects

• Pretty generic for all
games

• Would be others,
such as score, etc.

• FSMs hierarchical,
break down finer

• Once mastered,
allow visualization
of complex game

Kinds of architecture of game Kinds of architecture of game
(engine)(engine)

• Oriented on animation
– For action
– For real strategy
– For turn-based strategy
– For quest

• Oriented on Intelligence
– For board games
– For casual games

Typical engine for action from QuakeTypical engine for action from Quake

Typical engine for turnTypical engine for turn--based based
strategy from Civilizationstrategy from Civilization

