Console Programming

Rosen Diankov

15-466 Game Programming
Spring 2007
Carnegie Mellon University

Introduction

« Game Engines — graphics point of view
— Current generation requirements

 Console Architectures
— PS2, Xbox, Xbox 360, PS3

What are consoles to developers?

« Hardware and OS is the same

— Developers don’t have to support many different GPU feature sets
» Very time consuming for PC developers

— No installation, it just works out of the box
« Security (as advertised)
— Code and art is safe from hackers
— Ripping games is hard
» Most consoles do not use CDs/DVDs
» The newer consoles encrypt all the data on the discs
« Game Engines - optimization
— console instruction set
— Different devices like graphics and CPUs communicate in different ways
— Memory latency, cache, timing

Console Basics

* Predictability
— No extra OS tasks interfere with the game

— One process only: the game
« No unpredictable context switches

 Full control of everything

* Finite memory
— No virtual memory and paging

Game Engine Design

« Try to abstract hardware as much as possible
— Only works for simple scenes
— Optimization is limited
« (Consider an abstract object with a Render() method

— Have to completely save or reset GPU state before rendering the
object
« Alpha blending, zbuffer, stencil buffers
— Load all textures, models, shaders, and other resources

— Actually kick off the render call to the graphics driver
« Impossible to do global effects like
— Motion blurring

— Shadows
— Blooming

Shadow Mapping 1

Shadow Mapping 2

Depth Map for Light’s Point of View

Shadow Mapping 3

L

Projected Light Depth Map Depth Map of camera

Blooming

32bit render target Floating point render target,
with normalized lighting

Blooming 2

Scene rendered to a floating-point surface
l".é“:\.‘-

.,

Scaled copy Measured luminance

Bright-pass filtered

Star effect \ Bloom effect

E KT
! /7

Final

Game Engines Revisited

* Rule of thumb for graphics
— Need to have the least render state, texture, vertex buffer, and shader changes
— Only render an object considering the local lights
— Don’t render objects that user can’t see
— Don’t render high quality objects that are far away

Physics, Game play, Sound databases menus
collision animation,
detection Al
Levels
Particle
Database > Render Manager Effects
Manager Object Render
! Start Effect, End Effect > hardware
Assign render targets
Distribute resources > hardware

Art pipeline Choose object rendering order

Maintain all lights of scene

CPU:

Parallelism

It is extremely important that the GPU and CPU run in parallel as

much as possible

When draw routine is called
— The command isn’t executed right away, but is put in a special buffer

— The GPU will execute that buffer when it gets to it

Stalls commonly occur from
— Transferring textures/models to GPU memory

— Settings states

— Reading GPU render target data from the CPU

Graphics | Game stuff

Graphics

GPU frame 1

GPU

Game stuff
frame 2

Playstation 2

/+ processing units

Main processor - 300Mhz, 32Mb memory
— 64Dbit + 128 bit MMI extensions

4Mb video memory custom graphics
2 128Dbit Vector Units

Everything connected to a 10 channel
DMA bus

PS2 Architecture

GS
G
GIF
cop cop2
—vuress || |52
EMAC L, MMALUO | | amu VU Regs i
FPU DIV |35 MM/ALUA as- |45~ % ﬁ ——
TLBs F A .
TN E— , LFC [rwac |
1 1
copo 5 ‘D$ SPR _ el
16 KB || BKB ||| 16 KB micra VL micra VU
e Lo | e 1 e | o
UCAB 1
INTC 1
| BIU | VIF
CORE .
8
128 ——
i
i
- _‘ -
Timer DMAC
IFU DRAMC SIF |
VSyne! ROR AM |, SBUS/IOP
HSync 32 xB00Mhz 32
FIFO

{Mumbers show sizes in qwords.)

Inside a Vector Unit

Niecro mstruction feteh vt

it : -«
Vector Unit VU Micro Mem .
4 EBytes ar 16 EBytes special
registers
b e VI16-VI31
63 ¢ 0
lme - 128 hi Upper Instruction Lower Instruction | COF2
bold Ime : 128 bits PP control
li’ 12 /f 32 registers
1 1
+ [177 0 N B
ngé 2L . - Upper Execution Ut Lower Execution Uit
<= floating - ===
. | - - - - = — | i mteger
QMTC: registers > % E E =] = E & | E - registers
100! VF00-VF31 2lHelle |2 NS T1]C VIO-VIIS
: & i
(COP2 data registers) 3 R
|
S
| I
1
1
Vector Processing Unit : 1
VPU] !
VU Mem ; VIF
4 KBytes or 16 KBytes Y

Extermal Units

Paths to the Graphics Synthesizer

GS
T B4ET
Addr |- - Data
i =
| GIF i |
E Buffer !
1 [:
! Boit | . odbi]
| — | Addr Data :
: f f I
; \ Packing logic |
. | x |
b ————— ""r """ e i P - S PR !
| @BUBCLE | @BUSCLE @BUSCLK
iT | .
(KGKICK) b B ———
PATH

GS_CTRL

mapped to Main BUS

Control Regs.

Debug Regs. || vy Mem1 GIF
s VIFT | FIFO
(DIRECT) FIFO

Example of Data Flow

Ay

ol

copd

| micro¥EM | | micre AEM

Analysis

Too complex — 7+ processing units

— Sony provided virtually no drivers, it instead gave out the hardware
manuals

» Sony also hid the IOP interface
— Developers had to worry about DMA transfers, stalls, latencies
» Optimization is a nightmare
» Hardware itself has many undocumented ‘features’
» Fixing these ‘features’ stopped certain games from working
Multi-threaded — very hard to catch bugs
Powerful — if game engine is designed well

— If the PS3 had the same architecture as the PS2 except everything was
faster, and there was more memory, PS3 would probably rock

» Impossible due to various reasons
GS just computed raster operations — alpha blending, zbuffering,
texture mapping
— Main computation of colors and textures was left to the VUs
— Most operations were per-vertex

Xbox — the Microsoft way

Hide everything from the developers
Provide drivers and use DirectX for rendering
Pentium 3, 733 Mhz, 64Mb memory

GeForce 3, 250Mhz
— pixel and vertex shaders (1.0) <- weak, but can do per-pixel ops

CPU GPU

A
A 4

Sound Network Controllers

XBox Analysis

* Very easy to develop for (DirectX 8)
— Familiar x86 instruction set

— In fact, developers could just recompile their PC
game to Xbox without much modification

* Limited number of effects

— Pixel shaders were limited to 4 texture reads and 8
pixel shader operations

— Bump mapping, reflections, refractions, shadow maps

* No multi-threading required (drivers took care of
everything)

Playstation 3

Cell Processor Architecture

1/0
Controller

1/0
Controller

EIB
Dual "configurable”

High speed /O

channels

(76.8 GBytes per
second in total)

Dual 12.8 GByte per
second memory busses
give Cell huge memory
bandwidth. (25.6 GBytes
per second in total)

LK

\ EIB (Element Interconnect Bus)

© Nicheolas Blachford 2005 is the internal communication system.

Analysis

* Memory for SPEs is too low

* There is only one general purpose
processor
* Design issues?

— Do we really need that much raw vector unit
power?

Xbox 360

Simplified Xbox 360 architectural diagram

DVD
GPU

Hard drive (Ati Xenos)
Contollers =00 MHz

Front. Contrallers

Memory Unit Forts

Fear Panel USE
(Wirsless LAN etc_)

Ethernst
100Mbps

1]
Audio Out
FLASH

System control

Xbox 360

o [
L

o] (o]
|

CPU (3.2GHz)
Core 0 Cora 1 Core 2
(PowerPC) (PowarPC) PowerPC)
)) i

1ME Shared L2 Cache

L1

FSBiFront Side Bus)

(=]
oo [om]
|

5.4Gbps /pin FSB 21.6G8/sec
10LBE wac W MBI e
SATA South Bl'idg@ GPU i o + somass diat
GPU Main Di ¥
l—l BiU{Bus Intertaca Linit) —_— Main
SATA Mernory
Cartrol Bus = — | | 224GB/eec 512MB
= i [GOORT |
]
. g& [GDDRZ |
— GPU Core (500MHz) | e 25’ St
—— = 3 | GDOR3 |
B| | soouessme W] Ef e
e (x| Ml 8 1 E [GODRE
usa g iGB 2 = 1AM R
T = 138-hit.
USE § TR B 1.4Gbps/pin
s AW e
p :
— e gi (]
L | p— 8 [ODDRE |
I T Eg HLEME e
: * p——
HEID | GD'"“! R | ‘!: s
—_— HMA Decoder Shared
Memory
P S1ZMB
S | Aoy |
e oy | Ghip VIDEQ Out
TR el
(lm
25008, sec [
eDiAM
10MB
(Rendering Memory!

=0FRAM Die

Analysis

EDRAM is too low, but that's just being
picky

It uses DirectX 9+, so all PC games are
directly portable to it.

Unified Memory!
— General purpose computation

XNA — anyone can develop games for
x360 and share them across the net (C#)

Trends/Challenges

» Multi-threading

Physics, Game play, 10 — Sound, Graphics, Network
collision animation, controllers, Procedural
detection Al microphone Geometry

« Have to abstract effects across
architectures

« Have middle-ware solutions for a lot of
components

