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Introduction

« Game Engines — graphics point of view
— Current generation requirements

 Console Architectures
— PS2, Xbox, Xbox 360, PS3



What are consoles to developers?

« Hardware and OS is the same

— Developers don’t have to support many different GPU feature sets
» Very time consuming for PC developers

— No installation, it just works out of the box
« Security (as advertised)
— Code and art is safe from hackers
— Ripping games is hard
» Most consoles do not use CDs/DVDs
» The newer consoles encrypt all the data on the discs
« Game Engines - optimization
— console instruction set
— Different devices like graphics and CPUs communicate in different ways
— Memory latency, cache, timing



Console Basics

* Predictability
— No extra OS tasks interfere with the game

— One process only: the game
« No unpredictable context switches

 Full control of everything

* Finite memory
— No virtual memory and paging



Game Engine Design

« Try to abstract hardware as much as possible
— Only works for simple scenes
— Optimization is limited
« (Consider an abstract object with a Render() method

— Have to completely save or reset GPU state before rendering the
object
« Alpha blending, zbuffer, stencil buffers
— Load all textures, models, shaders, and other resources

— Actually kick off the render call to the graphics driver
« Impossible to do global effects like
— Motion blurring

— Shadows
— Blooming



Shadow Mapping 1




Shadow Mapping 2

Depth Map for Light’s Point of View



Shadow Mapping 3
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Blooming

32bit render target Floating point render target,
with normalized lighting



Blooming 2

Scene rendered to a floating-point surface
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Game Engines Revisited

* Rule of thumb for graphics
— Need to have the least render state, texture, vertex buffer, and shader changes
— Only render an object considering the local lights
— Don’t render objects that user can’t see
— Don’t render high quality objects that are far away

Physics, Game play, Sound databases menus
collision animation,
detection Al
Levels
Particle
Database > Render Manager Effects
Manager Object Render
! Start Effect, End Effect > hardware
Assign render targets
Distribute resources > hardware

Art pipeline Choose object rendering order

Maintain all lights of scene




CPU:

Parallelism

It is extremely important that the GPU and CPU run in parallel as

much as possible

When draw routine is called
— The command isn’t executed right away, but is put in a special buffer

— The GPU will execute that buffer when it gets to it

Stalls commonly occur from
— Transferring textures/models to GPU memory

— Settings states

— Reading GPU render target data from the CPU

Graphics | Game stuff

Graphics

GPU frame 1

GPU

Game stuff
frame 2




Playstation 2

/+ processing units

Main processor - 300Mhz, 32Mb memory
— 64Dbit + 128 bit MMI extensions

4Mb video memory custom graphics
2 128Dbit Vector Units

Everything connected to a 10 channel
DMA bus



PS2 Architecture
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Inside a Vector Unit
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Paths to the Graphics Synthesizer
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Example of Data Flow
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Analysis

Too complex — 7+ processing units

— Sony provided virtually no drivers, it instead gave out the hardware
manuals

» Sony also hid the IOP interface
— Developers had to worry about DMA transfers, stalls, latencies
» Optimization is a nightmare
» Hardware itself has many undocumented ‘features’
» Fixing these ‘features’ stopped certain games from working
Multi-threaded — very hard to catch bugs
Powerful — if game engine is designed well

— If the PS3 had the same architecture as the PS2 except everything was
faster, and there was more memory, PS3 would probably rock

» Impossible due to various reasons
GS just computed raster operations — alpha blending, zbuffering,
texture mapping
— Main computation of colors and textures was left to the VUs
— Most operations were per-vertex



Xbox — the Microsoft way

Hide everything from the developers
Provide drivers and use DirectX for rendering
Pentium 3, 733 Mhz, 64Mb memory

GeForce 3, 250Mhz
— pixel and vertex shaders (1.0) <- weak, but can do per-pixel ops

CPU GPU

A
A 4

Sound Network Controllers




XBox Analysis

* Very easy to develop for (DirectX 8)
— Familiar x86 instruction set

— In fact, developers could just recompile their PC
game to Xbox without much modification

* Limited number of effects

— Pixel shaders were limited to 4 texture reads and 8
pixel shader operations

— Bump mapping, reflections, refractions, shadow maps

* No multi-threading required (drivers took care of
everything)



Playstation 3

Cell Processor Architecture
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Analysis

* Memory for SPEs is too low

* There is only one general purpose
processor
* Design issues?

— Do we really need that much raw vector unit
power?



Xbox 360

Simplified Xbox 360 architectural diagram

DVD
GPU

Hard drive (Ati Xenos)
Contollers =00 MHz
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Analysis

EDRAM is too low, but that's just being
picky

It uses DirectX 9+, so all PC games are
directly portable to it.

Unified Memory!
— General purpose computation

XNA — anyone can develop games for
x360 and share them across the net (C#)



Trends/Challenges

» Multi-threading

Physics, Game play, 10 — Sound, Graphics, Network
collision animation, controllers, Procedural
detection Al microphone Geometry

« Have to abstract effects across
architectures

« Have middle-ware solutions for a lot of
components




