
Console Programming

Rosen Diankov

15-466 Game Programming
Spring 2007

Carnegie Mellon University



Introduction

• Game Engines – graphics point of view
– Current generation requirements 

• Console Architectures
– PS2, Xbox, Xbox 360, PS3



What are consoles to developers?

• Hardware and OS is the same
– Developers don’t have to support many different GPU feature sets

• Very time consuming for PC developers
– No installation, it just works out of the box

• Security (as advertised)
– Code and art is safe from hackers
– Ripping games is hard

• Most consoles do not use CDs/DVDs
• The newer consoles encrypt all the data on the discs

• Game Engines - optimization
– console instruction set
– Different devices like graphics and CPUs communicate in different ways
– Memory latency, cache, timing



Console Basics

• Predictability
– No extra OS tasks interfere with the game
– One process only: the game

• No unpredictable context switches

• Full control of everything
• Finite memory

– No virtual memory and paging



Game Engine Design
• Try to abstract hardware as much as possible

– Only works for simple scenes
– Optimization is limited

• Consider an abstract object with a Render() method
– Have to completely save or reset GPU state before rendering the 

object
• Alpha blending, zbuffer, stencil buffers

– Load all textures, models, shaders, and other resources
– Actually kick off the render call to the graphics driver

• Impossible to do global effects like
– Motion blurring
– Shadows
– Blooming



Shadow Mapping 1



Shadow Mapping 2

Depth Map for Light’s Point of View



Shadow Mapping 3

Depth Map of cameraProjected Light Depth Map



Blooming

32bit render target Floating point render target, 
with normalized lighting



Blooming 2



Game Engines Revisited

hardware

hardware

Render Manager

Object Render

Start Effect, End Effect

Assign render targets

Distribute resources

Choose object rendering order

Maintain all lights of scene

Database
Manager

• Rule of thumb for graphics
– Need to have the least render state, texture, vertex buffer, and shader changes
– Only render an object considering the local lights
– Don’t render objects that user can’t see
– Don’t render high quality objects that are far away

Art pipeline

Physics, 
collision 
detection

Game play, 
animation,

AI

Sound menusdatabases

Levels

Particle 
Effects



Parallelism
• It is extremely important that the GPU and CPU run in parallel as 

much as possible
• When draw routine is called

– The command isn’t executed right away, but is put in a special buffer
– The GPU will execute that buffer when it gets to it

• Stalls commonly occur from
– Transferring textures/models to GPU memory
– Settings states
– Reading GPU render target data from the CPU

Graphics Game stuff Graphics Read - stall

GPU frame 1 GPU frame 2

Game stuff

idle

CPU:



Playstation 2

• 7+ processing units
• Main processor - 300Mhz, 32Mb memory

– 64bit + 128 bit MMI extensions

• 4Mb video memory custom graphics
• 2 128bit Vector Units
• Everything connected to a 10 channel 

DMA bus



PS2 Architecture



Inside a Vector Unit



Paths to the Graphics Synthesizer



Example of Data Flow



Analysis
• Too complex – 7+ processing units

– Sony provided virtually no drivers, it instead gave out the hardware 
manuals

• Sony also hid the IOP interface
– Developers had to worry about DMA transfers, stalls, latencies

• Optimization is a nightmare
• Hardware itself has many undocumented ‘features’
• Fixing these ‘features’ stopped certain games from working

• Multi-threaded – very hard to catch bugs
• Powerful – if game engine is designed well

– If the PS3 had the same architecture as the PS2 except everything was 
faster, and there was more memory, PS3 would probably rock

• Impossible due to various reasons
• GS just computed raster operations – alpha blending, zbuffering, 

texture mapping
– Main computation of colors and textures was left to the VUs
– Most operations were per-vertex



Xbox – the Microsoft way
• Hide everything from the developers
• Provide drivers and use DirectX for rendering
• Pentium 3, 733 Mhz, 64Mb memory
• GeForce 3, 250Mhz

– pixel and vertex shaders (1.0) <- weak, but can do per-pixel ops

CPU GPU

Sound Network Controllers

?



XBox Analysis

• Very easy to develop for (DirectX 8)
– Familiar x86 instruction set
– In fact, developers could just recompile their PC 

game to Xbox without much modification

• Limited number of effects 
– Pixel shaders were limited to 4 texture reads and 8 

pixel shader operations
– Bump mapping, reflections, refractions, shadow maps

• No multi-threading required (drivers took care of 
everything)



Playstation 3



Analysis

• Memory for SPEs is too low
• There is only one general purpose 

processor
• Design issues?

– Do we really need that much raw vector unit 
power?



Xbox 360



Xbox 360



Analysis

• EDRAM is too low, but that’s just being 
picky

• It uses DirectX 9+, so all PC games are 
directly portable to it.

• Unified Memory!
– General purpose computation

• XNA – anyone can develop games for 
x360 and share them across the net (C#)



Trends/Challenges

• Multi-threading

• Have to abstract effects across 
architectures

• Have middle-ware solutions for a lot of 
components

Physics, 
collision 
detection

Game play, 
animation,

AI

IO – Sound, 
controllers, 
microphone

Graphics, 
Procedural 
Geometry

Network


