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Vectors
• Vector v is an entity with magnitude 

(length) and direction
• Vector with magnitude 1 is normalized 

vector
• Not that does not have a location
• Two vectors with same magnitude and 

direction are equal, no matter where draw 
on the page (screen)
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Vector addition

• u = v+w

v w
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Vector addition and subtruction
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Real Vector Space

• Vector space allows to represent vectors 
symbolically

• Real vector space is the set of all ordered pairs 
of real numbers

• 2-dimensinal
• 3-dimensinal
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Standard basis for a vector space 
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Main property of basis β is that for every vector v in V there is a unique
linear combination of the vectors in β that equal v.
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We can think of x,y and z as the amounts we move in the I, j and k
directions.
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Inner product

• Set of functions <v,w> returning a real 
scalar with following properties:
<v,w> = <w,v>
<u+v,w> = <u,w> + <v,w>
a<v,w> = <av,w>
<v,v> >= 0
<v,v> = 0 iff v = 0



8

Dot product
v·w = ||v||||w|| cosθ

v·w = uxwx+uywy+uzwz

If v·w = 0 then vectors v and w are orthogonal

Let in game v is a view vector and t is vector of 
any object. 

If v·w < 0, then the object is behind us and 
therefore is invisible for AI
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Cross product

• Aim is determination new vector 
orthogonal to both determined vectors

• Also it is known as vector product
||v x w|| = ||v||||w|| sinθ

and v x w = - (w x v )
v x w = (vywz-wyvz, yzwx-wzvx, vxwy-wxvy)
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Triple products

• Vector triple product
u x (v x w)

• Scalar triple product
u · (v x w)

• If u · (v x w) > 0 then the shortest rotation 
from v to w is in counterclockwise 
direction, otherwise – in clockwise 
direction
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Affine space
• An affine space consists of a set of points W and a 

vector space V
• Relation between the points and vectors:

– For every pair of points P and Q in W exist a unique vector v in V 
such that

v = Q - P
– For every point P in W and every vector v in V exist a unique 

point Q such that
Q = P + v

Representation of any point in W is P = O + v, where
O is fixed point in W named as origin
Combination of the origin O and basis vectors is known as a 

coordinate frame
If we work with standard origin (0,0,..,0) a standard basis then we 

work with Cartesian frame
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Polar and spherical coordinates
• Relation between polar and Cartesian 

coordinates
x = r cos θ,
y = r sin θ

• Relation between spherical and Cartesian 
coordinates

X = ρ sin φ cos θ,
Y = ρ sin φ sin θ,
Z = ρ cos φ,

where φ is angle between z-axis and projection of 
v on yz plane, θ is angle between x-axis and 
projection of v on xy plane 
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Triangle

• Determined by 3 vectors
v0 = P1 - P2

v1 = P2 – P1

v3 = P0 – P2
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Linear transformations

• Only operations possible in linear 
transformations are multiplication by a 
constant and addition

• Linear transformation Τ is a mapping 
between two vector spaces V and W, 
where for all v in V and all scalars a:
– T(v0+v1) = T(v0)+T(v1) for all v0,v1 in V,
– T(av) = aT(v) for all v in V
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Matrices

• It is 2-dimensional array of value (n x m)
• Elements, rows and columns
• Diagonal and trace
• Square, zero, diagonal and triangular 

matrix
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Simple operations

• Addition
S = A + B
si,j = ai,j + bi,j

• Scalar multiplication
P = sA

• Transpose
AT
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Matrices (cont.)

• Vector may be 
represented by matrix 
with one column (or 
row)

• Block matrix or matrix 
with submatrices
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Matrix product
C = AB

It is used for representation of linear 
transformation of vector

B = Ax,
where x is n-dimensional vector and b is m-

dimensional vector (result of transformation)
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Affine transformations

• For points P and constants a in affine 
space A

T(a0P0+…+an-1Pn-1) = a0T(P0)+…+an-1TPn-1

where a0+…+an-1 = 1

Affine transformations are useful for games 
because provide remain of collinearity and 
coplanarity during transformations

Transformation is Vnew = Vold x M
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Affine transformations (cont.)

• Translation
– T(P) = P + t
– Simulation of moving of object in space, size 

and shape of object are not changed
• Matrix for translation of vector

[ 1 0 0 0 ] 
[ 0 1 0 0 ]
[ 0 0 1 0 ]
[ x y z 1 ] 
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Affine transformations (cont.)

Rotation
• Around x-axis

y’ = ycosθ - zsinθ
z’ = ycosθ + zcosθ

• Around y-axis
X’ = zsinθ – xcosθ
Z’ = zcosθ – xsinθ

• Around z-axis
X’ = xcosθ – ysinθ
Y’ = xsinθ + ycosθ
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Affine transformations (cont.)

Rotation
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Where
Sx = Sinθx and so on
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Affine transformations (cont.)

Scaling
• Cs – center of scaling
• Let Cs=0 and y=0
• Then matrix is
• If a=b=c then it is 

uniform scaling 
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Affine transformations (cont.)

• Reflection
• Shear

– Shear by x-axis

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1,0,
0,1,
0,0,1

b
axH



25

Combination of transformations

• Vnew = Vold x (M1 x M2 x …)

• Lot of transformations in games
• So it is necessary hardware support
- graphics processors
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3D models
• 3D model is a mathematical representation of a 

three-dimensional object
• It can be displayed as a two-dimensional image 

through a process called 3D rendering or used 
in a computer simulation of physical phenomena

• 3D models are most often created with special 
software applications called 3D modelers. Being 
a collection of data (points and other 
information)

• 3D models can be created by hand or 
algorithmically (procedural modeling) and 
usually are storing in separate files 
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3D models (cont.)
• A 3D model by itself is not visual. It can be rendered as a 

simple wireframe at varying levels of detail, or shaded in 
a variety of ways

• Many 3D models, however, are covered in a covering 
called a texture (the process of aligning the texture to 
coordinates on the 3D model is called texture mapping).

• A texture is nothing more than a graphic image, but 
gives the model more detail and makes it look more 
realistic. A 3D model of a person, for example, looks 
more realistic with a texture of skin and clothes, than a 
simple monochromatic model or wireframe of the same 
model 
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3D model (cont.)
• Other effects, beyond texturing, can be done to 3D 

models to add to their realism. For example, the surface 
normals can be tweaked to effect how they are lit, certain 
surfaces can have bump mapping applied and any other 
number of 3D rendering tricks can be applied.

• 3D models are often animated for some uses. They can 
be animated from within the 3D modeler that created 
them or externally. Often extra data is added to the 
model to make it easier to animate. For example, some 
3D models of humans and animals have entire bone 
systems so they will look realistic when they move and 
can be manipulated via joints and bones
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Primitives

• Model is based on primitives
• Primitives are basic shapes
• Most 3d packages have same primitives:

– Polygon, Sphere, Cube, Cylinder, Plane
• Most used primitive is polygon
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Problems with Polygons
• Interaction is a problem

– Dragging points around is time consuming
– Maintaining things like smoothness is difficult

• They are inherently an approximation
– Things like silhouettes can never be perfect without 

very large numbers of polygons, and corresponding 
expense

• Low level representation
– Eg: Hard to increase, or decrease, the resolution
– Hard to extract information like curvature
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More Object 
Representations

• Hierarchical modeling
• Instancing and Parametric Instancing
• Constructive Solid Geometry
• Sweep Objects
• Octrees
• Blobs and Metaballs and other such 

things
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Hierarchical Modeling
• Hierarchical model: Group of meshes related by a 

tree (or graph) structure
– Properties of children are derived from their 

parents
– Most useful for animating polygonal meshes

• Consider a walking (humanoid, classic) robot:
– How would you move the robot around?
– Does the entire robot move in the same way?
– Does the position of one part of the robot 

depend on other parts?
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Hierarchical Model 
Example

Move body
Draw body

left arml Rotate about shoulder
Draw upper arm

Translate (l,0,0)
Rotate about origin of
lower arm
Draw lower arm

Important Point:
•Every node has its own 
local coordinate system.
•This makes specifying 
transformations much 
easier.
•What are we assuming 
about the “upper arm”
coordinate system?
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Hierarchical Details
• Generally represented as a tree, with transformations 

and instances at any node
– Can use a general graph, but resolving inheritance 

conflicts is a problem
• Rendered by traversing the tree, applying the 

transformations, and rendering the instances
• Particularly useful for animation

– Human is a hierarchy of body, head, upper arm, 
lower arm, etc…

– Animate by changing the transformations at the 
nodes

• Other things can be inherited (colors, surface 
properties)
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Instancing

• Sometimes you need many copies of the 
“same” object
– Like chairs in a room

• Define one chair, the base or the 
prototype

• Create many instances (copies) of it, and 
apply a different transformation to each
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Parametric Instancing
• Many things, called primitives, are conveniently 

described by a label and a few parameters
– Cylinder: Radius, length, does it have end-caps, …
– Bolts: length, diameter, thread pitch, …

• This is a modeling format:
– Provide software that knows how to draw the object 

given the parameters, or knows how to produce a 
polygonal mesh

– How you manage the model depends on the 
rendering style

– Can be an exact representation
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Constructive Solid Geometry 
(CSG)

• Based on a tree structure, like hierarchical modeling, but now:
– The internal nodes are set operations: union, intersection or 

difference (sometimes complement)
– The edges of the tree have transformations associated with 

them
– The leaves contain only geometry

• Allows complex shapes with only a few primitives
– Common primitives are cylinders, cubes, etc, or quadric 

surfaces
• Motivated by computer aided design and manufacture

– Difference is like drilling or milling
– A common format in CAD products
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CSG Example

-

∪

-

cube

scale
translate

∪
scale
translate

Fill it in!

scale
translate

cylinder cylinder
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Sweep Objects
• Define a polygon by its edges
• Sweep it along a path
• The path taken by the edges form a surface - the sweep surface
• Special cases

– Surface of revolution: Rotate edges about an axis
– Extrusion: Sweep along a straight line
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Rendering Sweeps
• Convert to polygons

– Break path into short segments
– Create a copy of the sweep polygon at each 

segment
– Join the corresponding vertices between the 

polygons
– May need things like end-caps on surfaces of 

revolution and extrusions
• Normals come from sweep polygon and path 

orientation
• Sweep polygon defines one texture parameter, sweep 

path defines the other
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General Sweeps
• The path maybe any curve
• The polygon that is swept may be transformed as it is moved 

along the path
– Scale, rotate with respect to path orientation, …

• One common way to specify is:
– Give a poly-line (sequence of line segments) as the path
– Give a poly-line as the shape to sweep
– Give a transformation to apply at the vertex of each path 

segment
• Difficult to avoid self-intersection
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Spatial Enumeration
• Basic idea: Describe something by the space it occupies

– For example, break the volume of interest into lots of tiny 
cubes, and say which cubes are inside the object

– Works well for things like medical data
• The process itself, like MRI or CAT scans, enumerates the 

volume
• Data is associated with each voxel (volume element)

• Problem to overcome:
– For anything other than small volumes or low resolutions, the 

number of voxels explodes
– Note that the number of voxels grows with the cube of linear 

dimension
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Octrees (and Quadtrees)

• Build a tree where successive levels 
represent better resolution (smaller 
voxels)

• Large uniform spaces result in shallow 
trees

• Quadtree is for 2D (four children for each 
node)

• Octree is for 3D (eight children for each 
node)
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Quadtree Example

top left top right bot left bot right

Octree principle is the same, but there are 8 children
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Rendering Octrees
• Volume rendering renders octrees and associated data directly

– A special area of graphics, visualization, not covered in this 
class

• Can convert to polygons by a few methods:
– Just take faces of voxels that are on the boundary
– Find iso-surfaces within the volume and render those
– Typically do some interpolation (smoothing) to get rid of the 

artifacts from the voxelization
• Typically render with colors that indicate something about the 

data, but other methods exist
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Spatial Data Structures
• Octrees are an example of a spatial data structure

– A data structure specifically designed for storing information of a 
spatial nature

• E.g. Storing the location of fire hydrants in a city
• In graphics, octrees are frequently used to store information about 

where polygons, or other primitives, are located in a scene
– Speeds up many computations by making it fast to determine 

when something is relevant or not
– Just like BSP trees speed up visibility

• Other spatial data structures include BSP trees, KD-Trees, Interval 
trees, …
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Implicit Functions
• Some surfaces can be represented as the vanishing points of 

functions (defined over 3D space)
– Places where a function f(x,y,z)=0

• Some objects are easy represent this way
– Spheres, ellipses, and similar
– More generally, quadratic surfaces:

– Shapes depends on all the parameters a,b,c,d,e,f,g
0222 =++++++ gfzezdycybxax
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Blobs and Metaballs

• Define the location of some points
• For each point, define a function on the distance to a 

given point, (x,y,z)
• Sum these functions up, and use them as an implicit 

function
• Question: If I have two special points, in 2D, and my 

function is just the distance, what shape results?
• More generally, use Gaussian functions of distance, or 

other forms
– Various results are called blobs or metaballs
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Example with Blobs

Rendered with POVray. Not everything is a blob, but the characters are.
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Blob Math
• Implicit equation:

• The wi are weights – just numbers
• The gi are functions, one common choice is:

– ci and σi are parameters
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Rendering Implicit 
Surfaces

• Some methods can render then directly
– Raytracing - find intersections with Newton’s 

method
• For polygonal renderer, must convert to polygons
• Advantages:

– Good for organic looking shapes e.g. human body
– Reasonable interfaces for design

• Disadvantages:
– Difficult to render and control when animating
– Being replaced with subdivision surfaces, it 

appears
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Main class of game
class IvGame
{
public:

// Create needs to be implemented in the derived Game
class

static bool Create();

static void Destroy();

virtual bool Initialize( int argc, char* argv[] );

void Update();
void Display();
inline void Quit()          { mQuit = true; }
inline bool IsRunning()     { return !mQuit; }

static IvGame*  mGame;          // global pointer

IvClock*        mClock;         // main clock
IvDisplay*      mDisplay;       // window management
IvEventHandler* mEventHandler;  // event handling

protected:
// constructor/destructor
IvGame();
virtual ~IvGame();

bool ParseCommandLine( int argc, char* argv[] );
bool SetupSubsystems();

virtual void UpdateObjects( float dt ) = 0;
virtual void Render() = 0;

bool mQuit;
bool mPaused;

private:
// copy operations
IvGame(const IvGame& other);
IvGame& operator=(const IvGame& other);

};
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Fragment of game core routines (1)
// @ IvGame::Create()
//--------------------------------------------------
// Static constructor
//--------------------------------------------------
bool
IvGame::Create()
{

IvGame::mGame = new Game();
return ( IvGame::mGame != 0 );

}   // End of IvGame::Create()

/// @ Game::Initialize()
//--------------------------------------------------------------------
// Set up internal subsystems
//--------------------------------------------------------------------
bool
Game::Initialize( int argc, char* argv[] )
{

// Set up base class 
if ( !IvGame::Initialize( argc, argv ) )

return false;

mPlayer = new Player();
if (!mPlayer)

return false;

// Set some lights
::IvSetDefaultLighting();

return true;
}   // End of Game::Initialize()
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Fragment of game core routines (2)
// @ Game::Update()
//-------------------------------------------------------------------------------
// Main update loop
//-------------------------------------------------------------------------------
void
Game::UpdateObjects( float dt )
{

// update player
mPlayer->Update( dt );

}   // End of Game::Update()
// @ Game::Render()
//-------------------------------------------------------------------------------
// Render stuff
//-------------------------------------------------------------------------------
void
Game::Render() // Here's Where We Do All The Drawing
{   

// set up viewer
::IvSetDefaultViewer( -10.f, 2.0f, 10.0f );

// draw coordinate axes
::IvDrawAxes();

// draw the main object
mPlayer->Render();

}

// @ Game::Update()
//--------------------------------------------------
// Main update loop
//--------------------------------------------------
void
Game::UpdateObjects( float dt )
{

// update player
mPlayer->Update( dt );

}   // End of Game::Update()
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Demo “Transformations 1” from 
Chapter 3

• Basic transformation code.  Uses a full 
matrix and just concatenates new 
transforms.

• Controls
– ESC: quit
– I,J,K,L: translate in the XY plane
– P: scale down, up
– U,O: rotate around Z axis



56

Routine for transformations 1
// @ Player::Update()
//-------------------------------------------------------------------------
// Main update loop
//--------------------------------------------------------------------------
void
Player::Update( float dt )
{

// get change in transform for this frame
IvMatrix44 scale, rotate, xlate;
scale.Identity();
rotate.Identity();
float s = 1.0f;
float r = 0.0f;
float x = 0.0f, y = 0.0f, z = 0.0f; 

// set up scaling
if (IvGame::mGame->mEventHandler-

>IsKeyDown(';'))
{

s -= 0.25f*dt;
}
if (IvGame::mGame->mEventHandler-

>IsKeyDown('p'))
{

s += 0.25f*dt;
}
scale.Scaling( IvVector3(s, s, s) );

// set up rotate
if (IvGame::mGame->mEventHandler->IsKeyDown('o'))
{

r -= kPI*0.25f*dt;
}
if (IvGame::mGame->mEventHandler->IsKeyDown('u'))
{

r += kPI*0.25f*dt;
}
rotate.RotationZ( r );
// set up translation
if (IvGame::mGame->mEventHandler->IsKeyDown('k'))
{

x -= 3.0f*dt;
}
if (IvGame::mGame->mEventHandler->IsKeyDown('i'))
{

x += 3.0f*dt;
}
if (IvGame::mGame->mEventHandler->IsKeyDown('l'))
{

y -= 3.0f*dt;
}
if (IvGame::mGame->mEventHandler->IsKeyDown('j'))
{

y += 3.0f*dt;
}
IvVector3 xlatevector(x,y,z);
xlate.Translation( xlatevector );

// clear transform
if (IvGame::mGame->mEventHandler->IsKeyDown(' '))
{

mTransform.Identity();
}

// append transforms for this frame to current transform
// note order: mTransform is applied first, then scale, then rotate, then xlate
mTransform = xlate*rotate*scale*mTransform;

}   // End of Player::Update()
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Demo “Transformations 2” from 
Chapter 3

• Basic transformation code.  Undoes parts 
of transformation before concatenating 
changes so that resulting scales and 
rotations are centered on object.

• Controls
– ESC: quit
– I,J,K,L: translate in the XY plane
– P: scale down, up
– U,O: rotate around Z axis
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Demo “Transformations 3” from 
Chapter 3

• Basic transformation code.  Separates 
transformation into three parts and 
concatenates before rendering.

• Controls
– ESC: quit
– I,J,K,L: translate in the XY plane
– P: scale down, up
– U,O: rotate around Z axis
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Demo “Transformations 4” from 
Chapter 3

• This code example shows a three-piece 
hierarchy showing how transforms concatenate.  

• This shows a simple tank body-turret-barrel 
relationship.

• Controls
– ESC: quit
– I,J,K,L: translate tank in the XY plane
– ;,P: scale tank down, up
– U,O: rotate tank around Z axis
– A,D: rotate turret left/right
– W,S: raise barrel up/down
– SPACE: reset transforms
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Demo “Transformations 5” from 
Chapter 3

• This demo shows the power of a simple scene graph, 
which allows for quick and easy creation, management 
and rendering of hierachical scenes such as the 
articulated tank used herein.  The demo allows the user 
to move and rotate the tank, which turns the turret and 
barrel as well.  In addition, the turret and barrel can be 
independently articulated, as well

• The key commands are:
– i, k - translate tank in x
– j, l - translate tank in y
– u, o - rotate tank around z
– ;, p - scale tank
– a, d - rotate turret around z
– w, s - rotate barrel vertically
– space - reset all transforms
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Some of the most popular general 
purpose 3D modelers

• 3D Studio Max
• Alias
• Blender (open source) 
• Cheetah3D
• Cinema 4D
• LightWave
• Maya
• MilkShape 3D
• modo
• Rhinoceros 3D
• Softimage|XSI
• trueSpace
• ZBrush



62

Some free modelers available via 
the Internet

• Anim8or
• Art of Illusion
• AutoQ3D
• K-3D
• Quake 2 Modeler
• ShapeShop
• SketchUp
• SmoothTeddy
• Wings 3D
• Zanoza Modeler
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