Development of Games

Lecture 7 Introduction to animation

Basics of Motion Generation

- let Xi = configuration of Oi at tk = tO, $\forall i$
- END = false
- while (not END) do
- display Oi, $\forall i$
- $tk = tk + \Delta t$
- generate Xi at tk, $\forall i$
- END = *function*(motion generation)

Methods of Motion Generation

- Traditional Principles (Keyframing)
- Performance Capture (Motion Capture)
- Modeling/Simulation (Physics, Behaviors)
- Automatic Discovery (High-Level Control)

Keyframing (II)

- Advantages
 - Relatively easy to use
 - Providing low-level control
- Problems
 - Tedious and slow
 - Requiring the animator to understand the intimate details about the animated objects and the creativity to express their behavior in key-frames

Andrey V.Gavrilov Kyung Hee University

Sprites

 It is simplest method of simulation motion in simple 2D games

Motion Interpolation

- Interpolate using mathematical functions:
 - Linear
 - Hermite
 - Bezier
 - ... and many others (see Appendices of Richard Parent's online book)
- Forward & inverse kinematics for articulation
- Specifying & representing deformation

Basic Terminologies

- Kinematics: study of motion independent of underlying forces
- Degrees of freedom (DoF): the number of independent position variables needed to specify motions
- State Vector. vector space of all possible configurations of an articulated figure. In general, the dimensions of state vector is equal to the DoF of the articulated figure.

Forward vs. Inverse Kinematics

- Forward kinematics: motion of all joints is explicitly specified
- Inverse kinematics: given the position of the end effector, find the position and orientation of all joints in a hierarchy of linkages; also called "goal-directed motion". (See an inclass example.)

Forward Kinematics

 As DoF increases, there are more transformation to control and thus become more complicated to control the motion.

 Motion capture can simplify the process for well-defined motions and predetermined tasks.

Inverse Kinematics

- As DoF increases, the solution to the problem may become *undefined* and the system is said to be *redundant*. By adding more constraints reduces the dimensions of the solution.
- It's simple to use, when it works. But, it gives less control.
- Some common problems:
 - Existence of solutions
 - Multiple solutions
 - Methods used_{Andrey V.Gavrilov} Kyung Hee University

Modeling Deformation

- Geometric-based Techniques
 - Global & local deformation (Barr'84)
 - FFD (Sederberg & Parry'86) and variants
 - ... others
- Physically-based Techniques
 - particle systems
 - BEM
 - FEM & FEA
- Variational Techniques
 - Variational surface modeling (Welch & Witkin'92)
 - dynamic-NURBS (Terzopoulos & Qin'94)

Geometric Proximity Queries

- Given two object, how would you check:
- If they intersect with each other while moving?
- If they do not interpenetrate each other, how far are they apart?
- If they overlap, how much is the amount of penetration

Andrey V.Gavrilov Kyung Hee University

Collision Detection

- Update configurations by matrices
- Check for edge-edge intersection in 2D
- (Check for edge-face intersection in 3D)
- Check every point of A inside of B &
- every point of B inside of A
- Check for pair-wise edge-edge intersections
- *Imagine larger input size: N* = 1000+

Andrey V.Gavrilov Kyung Hee University

Classes of Objects & Problems

- 2D vs. 3D
- Convex vs. Non-Convex
- Polygonal vs. Non-Polygonal
- Open surfaces vs. Closed volumes
- Geometric vs. Volumetric
- Rigid vs. Non-rigid (deformable/flexible)
- Pairwise vs. Multiple (N-Body)
- CSG vs. B-Rep
- Static vs. Dynamic
- And so on... This may include other geometric representation schemata, etc. Andrey V.Gavrilov Kyung Hee University

Some Possible Approaches

- Geometric methods
- Algebraic Techniques
- Hierarchical Bounding Volumes
- Spatial Partitioning
- Others (e.g. optimization)

Test of intersection

- 3D object is incapsulated in sphere or box (Axis-Aligned Bounding Boxes or Object-Oriented Boxes)
 - Sphere-sphere intersection
 - Sphere-ray intersection
 - Sphere-plane intersection
 - AABB-AABB intersection
 - AABB-ray intersection
 - AABB-plane intersection
 - OOB-OOB intersection
 - OOB-ray intersection
 - OOB-plane intersection

Motion Capture (I)

• Use special sensors (trackers) to record the motion of a performer

 Recorded data is then used to generate motion for an animated character (figure)

Motion Capture (II)

Advantages

- Ease of generating realistic motions

- Problems
 - Not easy to accurately measure motions
 - Difficult to "scale" or "adjust" the recorded motions to fit the size of the animated characters
 - Limited capturing technology & devices
 - Sensor noise due to magnetic/metal trackers
 - Restricted motion due to wires & cables
 - Limited working volume

Physically-based Simulation (I)

- Use the laws of physics (or a good approximation) to generate motions
- Primary vs. secondary actions
- Active vs. passive systems
- Dynamic vs. static simulation

Physically-based Simulation (II)

- Advantages
 - Relatively easy to generate a family of similar motions
 - Can be used for describing realistic, complex animation, e.g. deformation
 - Can generate reproducible motions
- Problems
 - Challenging to build a simulator, as it requires in-depth understanding of physics & mathematics
 - Less low-level Acontrol iby the user Kyung Hee University

High-Level Control (I)

- Task level description using AI techniques:
 - Collision avoidance
 - Motion planning
 - Rule-based reasoning
 - Genetic algorithms
 - ... etc.

High-Level Control (II)

- Advantages
 - Very easy to specify/generate motions
 - Can reproduce realistic motions
- Problems
 - Need to specify all possible "rules"
 - The intelligence of the system is limited by its input or training
 - May not be reusable across different applications/domains