Development of Games

Lecture 8

Physically-based Simulation. Particle dynamics

Disclaimer

- The following slides reuse materials from SI GGRAPH 2001 Course Notes on Physically-based Modeling (copyright © 2001 by Andrew Witkin at Pixar).

A Newtonian Particle

- Differential equation: $\mathbf{f =} \mathbf{m a}$
- Forces can depend on:
- Position, Velocity, Time

$$
\ddot{\mathbf{x}}=\frac{\mathbf{f}(\mathbf{x}, \dot{\mathbf{x}}, t)}{m}
$$

Second Order Equations

$$
\ddot{\mathbf{x}}=\underline{\mathbf{f}(\mathbf{x}, \dot{\mathbf{x}}, t)}
$$

$$
m
$$

$$
\left\{\begin{array}{l}
\dot{\mathbf{x}}=\mathbf{V} \\
\dot{\mathbf{V}}=\mathbf{f} / m
\end{array}\right.
$$

We can transform a second order equation into a couple of first order equations.
$\Leftarrow \Leftarrow \Leftarrow$ as shown here.

Phase (State) Space

Concatenate \mathbf{x} and \mathbf{v} to make a 6-vector: Position in Phase Space.

Velocity in Phase Space: another 6-vector.

A vanilla 1st-order differential equation.

Particle Structure

Solver Interface

\mathbf{X}	$\underset{\text { Dim(state) }}{ }$	6
\mathbf{V}		\mathbf{X} \mathbf{f} \mathbf{m}
Get/Set State		
\mathbf{V}		

Particle Systems

Overall Setup

Particle System
 Solver Interface

 particles n time

Derivatives Evaluation Loop

- Clear forces
- Loop over particles, zero force accumulators.
- Calculate forces
- Sum all forces into accumulators.
- Gather
- Loop over particles, copying \mathbf{v} and \mathbf{f} / m into destination array.

Particle Systems with Forces

Solving Particle System Dynamics

$\begin{aligned} & \mathbf{x} \\ & \mathbf{V} \end{aligned}$	X		X
f	f	- •	f
m	m		m

Clear Force Accumulators

Deriv Eval Loop

Invoke apply_force functions

Type of Forces

- Constant gravity
- Position/time dependent force fields
- Velocity-Dependent drag
- n-ary
springs

Gravity

Force Law: $\mathbf{f}_{\text {grav }}=m \mathbf{G}$

Force Fields

- Magnetic Fields
- the direction of the velocity, the direction of the magnetic field, and the resulting force are all perpendicular to each other. The charge of the particle determines the direction of the resulting force.
- Vortex (an approximation)
- rotate around an axis of rotation $\Theta=$ magnitude/Rtightness
- need to specify center, magnitude, tightness
- R is the distance from center of rotation
- Tornado
- try a translation along the vortex axis that is also dependent on R, e.g. if Y is the axis of rotation, then

$$
T\left(0,-\frac{1}{\sqrt{R^{2}}}, 0\right)
$$

Viscous Drag

Force Law:
 $$
\mathbf{f}_{\mathrm{drag}}=-k_{\mathrm{drag}} \mathbf{v}
$$

Particle system

\square

Spring Forces

Force Law:

$$
\begin{aligned}
& \mathbf{f}_{1}=-\left[k_{s}(|\Delta \mathbf{x}|-r)+k_{d}\left(\frac{\Delta \mathbf{v} \cdot \Delta \mathbf{x}}{|\Delta \mathbf{x}|}\right)\right] \frac{\Delta \mathbf{x}}{|\Delta \mathbf{x}|} \\
& \mathbf{f}_{2}=-\mathbf{f}_{1}
\end{aligned}
$$

Damped Spring

Particle system

Collision and Response

- After applying forces, check for collisions or penetration
- If one has occurred, move particle to surface
- Apply resulting contact force (such as a bounce or dampened spring forces)

Bouncing off the Wall

- Later: rigid body collision and contact.
- For now, just simple point-plane collisions.
- Add-ons for a particle simulator.

Normal \& Tangential Forces

Collision Detection

$$
\begin{aligned}
& (\mathbf{X}-\mathbf{P}) \cdot \mathbf{N}<\varepsilon \\
& \mathbf{N} \cdot \mathbf{V}<0 \quad \underline{\text { Collision! }}
\end{aligned}
$$

- Within ε of the wall. - Heading in.

Collision Response

Before

After

$$
\mathbf{V}^{\prime}=\mathbf{V}_{\mathrm{T}}-\mathrm{k}_{\mathrm{r}} \mathbf{V}_{\mathrm{N}}
$$

(k_{r} is the coefficient of restitution, $0 \leq \mathrm{k}_{\mathrm{r}} \leq 1$)

Condition for Contact

$$
\begin{aligned}
|(\mathbf{X}-\mathbf{P}) \cdot \mathbf{N}| & <\varepsilon \\
|\mathbf{N} \cdot \mathbf{V}| & <\varepsilon
\end{aligned}
$$

- On the wall
- Moving along the wall
- Pushing against the wall

Contact Forces

$\mathbf{F}^{\prime}=\mathbf{F}_{\mathrm{T}}$
The wall pushes back, cancelling the normal component of F .
$\mathrm{F}_{\mathrm{c}}=-\mathrm{F}_{\mathrm{N}}=-(\mathrm{N} \cdot \mathrm{F}) \mathrm{F}$
(An example of a constraint force.)

Friction: $F_{f}=-k_{f}\left(-N^{\bullet} \cdot F\right) v_{t}$

