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Neural Networks is Black Box
Inputs

Outputs
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Black-Box Models

• Aims of many data analysis’s methods 
(pattern recognition, neural networks, 
evolutionary computation and related):
– building predictive data models
– adapting internal parameters of the data 

models to account for the known (training) 
data samples

– allowing for predictions to be made on the 
unknown (test) data samples
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Dangers

• Using a large number of numerical 
parameters to achieve high accuracy
– overfitting the data
– many irrelevant attributes may contribute to 

the final solution
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Drawbacks

• Combining predictive models with a priori 
knowledge about the problem is  difficult

• No systematic reasoning
• No explanations of recommendations
• No way to control and test the model in 

the areas of the future
• Unacceptable risk in safety-critical 

domains (medical, industrial)
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Reasoning with Logical Rules

• More acceptable to human users
• Comprehensible, provides explanations
• May be validated by human inspection
• Increases confidence in the system
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Machine Learning

• Explicit goal: the formulation of symbolic 
inductive methods
– methods that learn from examples

• Discovering rules that could be expressed 
in natural language
– rules similar to those a human expert might 

create
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Neural Networks as Black 
Boxes

• Perform mysterious functions
• Represent data in an incomprehensible 

way

• Two issues:
1. understanding what neural networks really do
2. using neural networks to extract logical rules 

describing the data.
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Sample (Cont.)

• If H7 and not H4 then Y
• If X1and not X3 then H4
• If X1 and X2 and X3 the H7

• If H7(90) and not H4(60) then Y
• If X1(90) and not X3(70) then H4
• If X1(40) and X2(50) and X3(80) the H7



UCLab, Kyung Hee University                
Andrey Gavrilov

12

Techniques for acquisition of 
Information from Trained ANN

• Sensitivity analysis
• Neural Network Visualization
• Rule Extraction
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Sensitivity Analysis

• Probe ANN with test inputs, and record the 
outputs

• Determining the impact or effect of an 
input variable on the output
– hold the other inputs to some fixed value (e.g. 

mean or median value), vary only the input 
while monitoring the change in outputs
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Automated Sensitivity Analysis
• For backpropagation ANN:

– keep track of the error terms computed 
during the back propagation step

– measure of the degree to which each input 
contributes to the output error

• the largest error ≡ the largest impact
– the relative contribution of each input to the 

output errors can be computed by 
acumulating errors over time and 
normalizing them
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Neural Network Visualization

• Using power of human brain to see and 
recognize patterns in two- and three-
dimensional data
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Visualization Samples
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♠♠ ...          ♠♠♥♥ ...          ♥♥♦♦ ...        ♦♦♣♣ ...         ♣♣
2 3 KA2 3 KA2 3 KA2 3 KA

weight of connection from input
neuron representing Ace of Hearts
to the last hidden neuron

weight of connection from
the first hidden neuron to 
the output neuron
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RULE EXTRACTION
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Propositional Logic Rules

• Standard crisp (boolean) propositional 
rules:

• Fuzzy version is a mapping from X space 
to the space of fuzzy class labels

• Crisp logic rules should give precise yes
or no answers

k
(i) CxClassXx =∈ )( THEN  IF
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Condition Part of Logic Rule

• Defined by a conjuction of logical 
predicate functions

• Usually predicate functions are tests on a 
single attribute
– if feature k has values that belong to a subset 

(for discrete features) or to an interval or 
(fuzzy) subsets for attribute K
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Decision Borders

(a) - general 
clusters

(b) - fuzzy rules
(c) - rough 

rules
(d) - crisp 

logical rules

source: Duch et.al, Computational Intelligence Methods..., 2004
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Linguistic Variables

• Attempts to verbalize knowledge require 
symbolic inputs (called linguistic variables)

• Two types of linguistic variables:
– context-independent - identical in all regions 

of the feature space
– context-dependent - may be different in each 

rule
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Decision Trees

• Fast and easy to 
use

• Hierarchical rules 
that they generate 
have somewhat 
limited power

source: Duch et.al, Computational Intelligence Methods..., 2004



UCLab, Kyung Hee University                
Andrey Gavrilov

24

NEURAL NETWORKS 
FOR RULE EXTRACTION
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Neural Rule Extraction 
Methods

• Neural networks are regarded commonly 
as black boxes but can be used to provide 
simple and accurate sets of logical rules

• Many neural algorithms extract logical 
rules directly from data have been devised
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Categorizing Rule-Extraction 
Techniques

• Expressive power of extracted rules 
• Translucency of the technique
• Specialized network training schemes
• Quality of extracted rules
• Algorithmic complexity
• The treatment of linguistic variables
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Expressive Power of Extracted 
Rules

• Types of extracted rules:
– crisp logic rules
– fuzzy logic rules
– first-order logic form of rules - rules with 

quantifiers and variables
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Translucency

• The relationship between the extracted 
rules and the internal architecture of the 
trained ANN

• Categories:
– decompositional (local methods)
– pedagogical (global methods)
– eclectic
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Translucency -
Decompositional Approach

• To extract rules at the level of each 
individual hidden and output unit within the 
trained ANN
– some form of analysis of the weight vector 

and associated bias of each unit
– rules with antecedents and consequents 

expressed in terms which are local to the unit
– a process of aggregation is required
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Translucency -
Pedagogical Approach

• The trained ANN viewed as a black box
• Finding rules that map inputs directly into 

outputs
• Such techniques typically are used in 

conjunction with a symbolic learning 
algorithm
– use the trained ANN to generate examples for 

the training algorithm
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Specialized network training 
schemes

• If specialized ANN training regime is 
required

• It provides some measure of the 
"portability" of the rule extraction technique 
across various ANN architectures

• Underlaying ANN can be modified by the 
rule extraction process
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Quality of extracted rules

• Criteria:
– accuracy - if can correctly classify a set of 

previously unseen examples
– fidelity - if extracted rules can mimic the 

behavior of the ANN
– consistency - if generated rules will produce 

the same classification of unseen examples
– comprehensibility - size of the rules set and 

number of antecendents per rule must be 
appropriate
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Algorithmic complexity

• Important especially for decompositional
approaches to rule extraction
– usually the basic process of searching for 

subsets of rules at the level of each (hidden 
and output) unit in the trained ANN is 
exponential in the number of inputs to the 
node
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The Treatment of Linguistic 
Variables

• Types of variables which limit usage of 
techniques:

– binary variables
– discretized inputs
– continuous variables that are converted to 

linguistic variables automatically
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Techniques Reviews

• Andrews et.al, A survey and critique..., 1995 
- 7 techniques described in detail

• Tickle et.al, The truth will come to light ..., 
1998 - 3 more techiques added

• Jacobsson, Rule extraction from recurrent ..., 
2005, techniques for recurrent neural
networks
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SAMPLE PROBLEMS
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Wisconsin Breast Cancer

• Data details:
– 699 cases
– 9 attributes f1-f9 (1-10 integer values)
– two classes: 

458 benign (65.5%) 
241 malignant (34.5%). 

– for 16 instances one attribute is missing

source: http://www.ics.uci.edu/~mlearn/MLRepository.html
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Wisconsin Breast Cancer - results

• Single rule: 
IF f2 = [1,2] then benign else malignant
– 646 correct (92.42%), 53 errors

• 5 rules for malignant:
R1: f1<9  &  f4<4  &  f6<2  &  f7<5
R2: f1<10  &  f3<4  &  f4<4  &  f6<3
R3: f1<7  &  f3<9  &  f4<3  &  f6=[4,9]  &  f7<4
R4: f1=[3,4]  &  f3<9  &  f4<10  &  f6<6  &  f7<8
R5: f1<6  &  f3<3  &  f7<8
ELSE: benign
– 692 correct (99%), 7 errors

source: http://www.phys.uni.torun.pl/kmk/projects/rules.html#Wisconsin
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The MONKs Problems

• Robots are described by six diferent
attributes:
– x1: head_shape ∈ round square octagon
– x2: body_shape ∈ round square octagon
– x3: is_smiling ∈ yes no
– x4: holding ∈ sword balloon flag
– x5: jacket_color ∈ red yellow green blue
– x6: has_tie ∈ yes no

source: ftp://ftp.funet.fi/pub/sci/neural/neuroprose/thrun.comparison.ps.Z
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The MONKs Problems
cont.

• Binary classification task
• Each problem is given by a logical

description of a class
• Only a subset of all 432 possible robots

with its classification is given

source: ftp://ftp.funet.fi/pub/sci/neural/neuroprose/thrun.comparison.ps.Z
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The MONKs Problems
cont.

• M1:
(head_shape = body_shape) or (jacket_color = red)
– 124 randomly selected training samples

• M2:
exactly two of the six attributes have their first value
– 169 randomly selected training samples

• M3:
(jacket_color is green and holding a sword) or 
(jacket_color is not blue and body shape is not 
octagon)
– 122 randomly selected training samples with 5% 

misclassifications (noise in the training set)
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M1, M2, M3 – best results

• C-MLP2LN algorithm (100% accuracy):
– M1: 4 rules + 2 exception, 14 atomic formulae
– M2: 16 rules and 8 exceptions, 132 atomic

formulae
– M3: 33 atomic formulae

source: http://www.phys.uni.torun.pl/kmk/projects/rules.html#Monk1
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