Hybrid Intelligent Systems

Lecture 15
Neural Networks in Robotics



Taxonomy of Mobile Robots

Humanoid,

Robin Murphy “Introduction to Al obotics"2004, MIT)

Ground

Mobile

Man-portable
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Control Approaches

Reactive Control

— Don’t think, (re)act.
Deliberative Control
— Think hard, act later.

Hybrid Control
— Think and act independently, in parallel.

Behavior-Based Control
— Think the way you act.
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Reactive Systems

Collections of sense-act (stimulus-
response) rules

Inherently concurrent (parallel)
No/minimal state

NO memory

Very fast and reactive

Unable to plan ahead

Unable to learn
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Deliberative Systems

 Based on the sense->plan->act
(SPA) model

* |nherently sequential

* Planning requires search, which is
slow

e Search requires a world model
 World models become outdated
e Search and planning takes too long
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Hybrid Systems

Combine the two extremes

— reactive system on the bottom

— deliberative system on the top

— connected by some intermediate layer

Often called 3-layer systems
Layers must operate concurrently

Different representations and time-
scales between the layers

The best.orwosst.ef,both worlds? -

Andrey Gavrilov




Behavior-Based Systems

An alternative to hybrid systems

Have the same capabilities
— the ability to act reactively
— the ability to act deliberatively

There Is no intermediate layer

A unified, consistent representation
IS used In the whole system=>
concurrent behaviors

That resolves issues of time-scale
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Tasks for neural networks in robotics

Recognition of releaser in behavior based robots

Recognition of objects in vision systems
— Obstacles

— Objects for manipulations

— Gestures

— Faces and emotions

Control of manipulator

Control of gain of legged robots

In feedback control loop for adaptive control of motors
Vision-guide motions

Learning in path planning without mapping

— Based on prediction

— Map is coding inside NN as weights of learned NN

Localization of robot

In perspective all levels of perception, decision making

and control of motions o
UCLab, Kyung Hee University
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Robot sensory prediction with SRN (Simple
Recurrent Network)
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Short Term Memory (STM) &
Simple T-maze problems

Delayed response tasks are a standard way of investigating short-term
memory (STM). The agent is typically assumed to 'remember’ in some
way the necessary information about the stimulus (for example the side
on which a stimulus appeared) during the delay period.

O O
Figure The two situations # %0 e Hee LiNGiiMent. Adapted from Ulbricht (199630
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Meeden’s (1996) recurrent robot
control architecture.

mator outputs .
The network’s inputs came

OOOO from light and touch sensors
hidden units OOOOO“‘H

SEnsor inputs context units
(touch, light. goal) (hidden units (t-1}}
Solid arrows represent fully connected layer of weights between two layers
of units (indicated by surrounding dotted lines).
Hidden unit values are fed back via a 1:1 copy connection (dashed
arrow) and used as extra inputs in the next time step.
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Where i1s memory what to do in RNN?

 RNNSs utilize their internal state (i.e. the hidden unit
activation values) to carry out behavioral sequences
corresponding to particular motion strategies instead of
merely reacting to the current input

 For example, to avoid the light the robot would (starting
from a position facing the light) first move backwards for
a couple of time steps (into the center of the
environment) and then carry out a series of alternating
forward right and backward left movements until it faces
away from the light

 Thus, it executes a multi-turn strategy in the center of the
environment, which overcomes the problem that the
environment’s smallest dimension is smaller than its own
turning radius.
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Sensors of the Khepera Robot
as Artificial Neural Network Inputs

13 14 Diameter 5.5 sm

M LT
.]!f I irf'"”“ .

L1 | m w6 L2

Sensors of the Khepara robot used in this study:

11, 12....16: infrared sensors;
G: ground (zone) sensor.
L1,L2: Light sensors.
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Kinds of neural-based control system of
robot used in experiments (Ziemke, 2000)
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All networks receive input from the four proximity sensors and the ground sensor,
and produce two outputs directly controlling the left and right wheels’ motors
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Sequential Cascaded Network (SCN)

comexs
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A second-order recurrent architecture consisting of (a) a

function network mapping input to output and internal state,
and (b) a context network mapping the internal state to the
next time step’s function network weights. The solid arrows

represent a fully connected layer of weights between two

layers of units. ucLab, Kyung Hee University 15
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Environment of experiments

The robot is placed in a rectangular environment of 21000 mm * 600 mm,
surrounded by walls (the straight lines), which contains a zone (the large
circle) outside of which it should keep moving while avoiding collisions,
whereas once it has entered the zone it should simply not leave it
anymore

The robot is initially placed with a random orientation in a random position
outside the zone, and during learning it is punished for collisions and
rewarded strongly for every time step it spends in the zone

Moreover, while outside the zone, it is rewarded for moving as quickly
and straight as possible and keeping away from walls

It uses four infrared proximity sensors at the front and a ground sensor,
which is only fully active in the time step when the robot passes the black
line marking the zone border

These five sensors provide input to the controller networks, and the
network’s two output units directly control the speeds of the two wheels.

UCLab, Kyung Hee University 16
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Environment of experiments (2)

The large circle indicates the zone the robot should enter and
stay in. The small circle represents the robot, and the lines
Inside the robot indicate position and direction of the infrared
proximity sensors used in experiments 1 and 2.

UCLab, Kyung Hee University
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Training of RNN In experiments

* In these experiments all control networks have been
trained using an evolutionary algorithm, a genetic
algorithm evolving an initially randomized population of
100 individuals over 5000 generations

e For architectures A, B and C the artificial genotype of
each individual encodes all the connection weights
(including biases) of a complete control network as a
single bitstring. Each real-valued weight (between —10.0
and +10.0) is represented by a string of 8 bits.

« For architectures D and E, in which function network
weights change dynamically, the genotype encodes the
connection weights in the context network plus initial
state unit activation values, such that the initial function
network weights can be derived by propagating the initial
state through the context network.
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Training of RNN In experiments (2)

« To evaluate their fitness each individual of every
generation is used to control the robot during a
trial period of 400 time steps, starting from a
random position outside the zone and with a
random orientation. While outside the zone
iIndividuals score between 0.0 and 1.0 fithess
points per time step, being rewarded for moving
as fast and as straight as possible while
minimizing encounters with walls. While inside
the zone, they simply receive 100 fithess points
for every time step they remain inside.
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Results

 Networks of architectures B, C, D, and E
quickly evolved to robustly solve the task.
The evolutionary process was
nevertheless continued for 5000
generations to ensure that evolution had
converged. Networks of architecture E
exhibit best overall performance, although
they are not able/allowed to score points
while using feedback
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Results (2)

Best individuals

40.8% (-40.1%)

mean fitness
20 zelected

-31.2% (-49.3%)

Mean fitness

44.5% (42.0%)

-3.5% (-6.6%)

_1.6% (-2.7%)

+6.6% (+3.8%)

-7.0% (-10.4%)

-4.4% (-8.9%)

10.1% (-14.4%)

-0.7% (-3.2%)

| e | |

2.2% (-3.4% -2.1% (-4.7%

Performance differences between architecture E and other
architectures in experiment 1. All differences are stated in
percent of the performance of architecture E

| Example trajectory for a robot
/1 controller (architecture B)
in experiment 1.
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Results (3)

output, left motar
output, right motor
bizs, left motor
biss, right motor
sersor, 1eft
sensor, front left
gersor, front right
sersor, rlght
sensor, ground
state unit 1

stzte unit =2
tithess

Example trajectory for a robot
controller (architecture D) in
experiment 1.

The robot correctly avoids the walls
twice by turning left, then enters the
zone and stays there, spinning in

place.
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Environment in experiment 2

® e ®
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Simulated Khepera robot in
environment 2.

The black circles represent objects,
which are to be avoided outside
the zone (indicated by the large
circle), but to be ‘collected’ inside.

In this experiment the robot receives —500 fitness points for collisions outside the
zone (possibly multiple times if persisting to bump into the obstacle) and +500
points for ‘collisions’ inside, but in this case always only once per ‘collected’ object
since it disappears immediately. The robot is not punished for leaving the zone,
but inside it receives 0.0 to 4.0 fitness points per time step for moving as fast and
as straight as possible and approaching objects. Outside the zone, as in
experiment 1, the only positive reward the robot can get is 0.0 to 1.0 fitness points
per time step for moving as fast and as straight as possible and staying away from

objects.
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Example trajectory for a robot controller (architecture B) in
experiment 2. The robot successfully collects four objects in the
zone, and correctly avoids objects and walls outside the zone.
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Recognition of room by Kohonen self-

organizing map (Seiji Yamada and
Morimichi Murota, 1996)
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Behaviors

Behavior A (turning in the concave corner): If
any obstacle within 10 cm in the front and within
10 cm

Behavior B (turning in the convex corner): if no
obstacle within 5 cm in the left and the right, and
within

Behavior C (wall-following-1): if any obstacle
within 5 cm In the left then steering 13.5"right.

Behavior D (wall-following-2): if no obstacle
within 5 cm In the left then steering 13.5"left.

UCLab, Kyung Hee University 26
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Transformation of sequence of
behavior to input vector

Bl-transformation

(1) If r; = A then v; = 11 + L. (2)Ifr; =B then v; =v;_, - L.
(3) f r; = C or D then v; = v;_,. (4] otherwise v; = 0 (i > n),
UCLab, Kyung Hee University 27
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Experiments with real robot

Exp-1: (identifying the rooms) After learning with training data, the
test data (63 input vectors) were given to the learned self-organizing
network. As a result, all the test data were correctly identified, and
verified the utility of our approach. Note that the 10 input vectors for
the identical room were somewhat different mutually because the
wall-following included noise like failure of executing behaviors.

Exp-2: (the rooms with obstacles) Though the test data used in
Exp-1 included noise, it was not so much. In this experiment, they
dealt with more noise like obstacles. They located some obstacles in
the rooms, and the mobile robot did wall-following in the rooms. The
nine behavior sequences were obtained and transformed into input
vectors. The input vectors (test data) were given to the self-
organizing network which was trained in Exp-1. As a result, five data
were correctly identified. The robot failed to recognize a room in
which several obstacles scattered. However the obstacles made the
room the different shape from the original one, thus we consider the
failure of identification is natural.

UCLab, Kyung Hee University 29
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The structure of the network for the
autonomous land vehicle

sharp left straight ahead sharp right

20 hidden
units

8x32 range finder
mput retina

30x32 video input retina

Andrey Gavrilov
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Experiments

The network was trained by presenting it samples with as inputs a
wide variety of road images taken under different viewing angles
and lighting conditions. 1200 Images were presented, 40 times
each while the weights were adjusted using the backpropagation
principle The authors claim that once the network is trained the
vehicle can accurately drive at about km/hour along ‘... a path
though a wooded area adjoining the Carnegie Mellon campus
under a variety of weather and lighting conditions.” The speed is

nearly twice as high as a non-neural algorithm running on the same
vehicle.

UCLab, Kyung Hee University
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Drama (A.Billard, J.Hayes, 1999)

Aszociatnve Moduls
(DEAMA Architecture)

| motar l=ft

Event daetector of bitor right

smnsory Sycbam A

Sensor B input / Actaator B output

(e.g. radic recelver and emitter)
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DRAMA (2)

There is one event defector module per sensor. Each mod-
ule receives » Input units and outputs to # associated
units in the DRAMA architecture, where »1s the num-
ber of units of the particular sensor (see Figure 2). The

neuronal representation of the internal structure of the
T 1 Output umits module is given in Figure 2. Each input unit is con-

Output to DREAMA  Architecture

o, o o ]

g nected to one memory unit, one oxthatunit and to a hresbold

. B gy . . . .
Threshold umit unit. (_Jutput ¥i (f) of the memory unit 7 at ame #1s

/I \ simply the value x, of the input unit 7 at time #1,
i ER)
7

Memorymits o ®(4) = o (¢ —1). Output ¥ of the threshold unit is

e

=

[' ’ ,| J Input umits
1/0

1/0 10

the result of the function @(x, H) applied onto the dif-

ference between the input units and memory units out-
5 ey {ZW s Py
puts: ¥; (#) =0\ |x;(£)— ¥ (£)

Sensor binary input tion @(x,H ) isa threshold function that outputs 1 when

,H), where the func-

x >= H. Finally, the state of the output unit_y 7} is
calculated as tollows:

5, =00, (1) + 32 (1)2)=

UCL B[-‘-’; {f}+9[ é|—“‘-’;‘ ()—2; (e =1 ],H }2] (1)



DRAMA (3). Associative module
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DRAMA (4)

Yut-1) Yjit-1) "f;{t—l}
X(t)
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Xiff) y ~ l
Sensor k Sensor | /‘
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where I , the transfer function, 1s the identity function

for input value less than 1 and saturates to 1 for value

greater than 1, Fx) = x 1if 5 <1, otherwise Ix) =1,

and (15 the retrieving function whose Equal:inn 15 g_iven
below 1n Equ:ltimn 3 and E:-:plained mn the fnllnwing para-
graph. The indices notation used in the Equal:innﬁ should

be iﬂterpreted as follows: 5::; 15 the confidence tactor of
the connection IEading from unit 7 to unit z
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DRAMA (5)
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where max, (s ) is the maximal value of confidence
factor of all the connections berween activated units 7
and unit 7, which satisfy the tempo ral condition encoded
in A(zp ). The function 8(x, H) is a threshold function
that r:ul:putq 1 when » == H. The output of function
(z 1s equal to 1 when both .4 and B terms are equal to 1,

otherwise it is zero. The temporal and spatial condi-
tions represented by the .4 and B terms can be para-
phrased as follows: 1) A(z}ﬁ ) = 1 if the time delay for
which the activation of um tj has been memorized be-
fore being correlated to the activation of unit 7 (this
time delay is encoded in the value of }'ﬁ_‘j which de-
creases linearly with time when no new “activation oc-
curs, see short term memory paragraph) is equal to the time
encoded in the time parameter 7, wi ithin an interval
error e. 2) B{g"} = 1if the confidénce factors o, asso-
ciated with the connection between one activated unit ¥
and unit 7, which satisfies the condition A@p,) =1, is
greater than or equal to 1/T times the maximum cr:nﬁ—

dence factnr of other activated connections,

maxjm{gf" . The effect of the two terms Afp, ) and

B(g,), and in particular of the threshold Tand ¢, on the
memory capacity will be discussed further in Sections
3.1 and 5.3 and an algorithm for calculating the param-

eters T and ¢ on-line will be Praqented in Section 3.1.
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DRAMA (6)

Winner-taks-all :!"-iltF'“- = ¥
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il - IEI - |'ff_ il -'_.r_j _ -
Time delay Confidenca X; ¥, (1)
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Adaptive movement control of a four-
legged walking machine

r : Reward
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Adaptive movement control of a four-
legged walking machine (2)

 The network generates the internal evaluation
and prototypical actions.

o For exploration purposes, stochastic offsets are
added to these actions. The stochastic offsets
are generated using a normal distribution. The
variance of this distribution is determined by the
current performance of the net.

 The executed action sequence causes an
external reward. The adaptation of the internal
evaluation and the action units are based on the
successive external and internal evaluations.
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Adaptive control of 6-legged walking
machine
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Adaptive control of 6-legged walking
machine (2)

evaluation stochastic
umit actlon wunits

sinle space

miiul Uy \JAUvI IIOV

A RBF-network for realization

of the self-organizing state
representation in the hidden layer
and the internal evaluation

and the action elements of

the output layer.

Vectors X is bases of Gaussian
activation functions.

W — matrix of connections between
“exemplars” and action stochastic
units.

Matrix V for connections

of exemplars with evaluation unit.
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Adaptive control of 6-legged walking
machine (3)

 |Inputs — 3 Euclidean coordinates of foot, ground
contact sensor.

e Generated outputs — angle offsets for 3 leg
joints.

o External reward is calculated as

Textern = Tmaz — ” Fasmﬁl - pﬁs:ﬁﬂrgﬂ ”

 Maximal award is returned if the target position
IS exactly reached

UCLab, Kyung Hee University
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Localization (A.Dubrawsky, 1996)
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Figure 3. Robot in front of the door: a) metric description; b} topological categorization of the position

coordinates; «©) topological categorization of the orientation angle.
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Localization (2)

TOPOLOGICAL METRIC
LOCATION LOCATION

FREPROCESSING
READINGS

Fa iuput interface
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X
CATEGORY

FUZZY kg TOPOLOGICAL
ARTMAR CATEGORY

Theia
CATEGDEY

LOCATION

Figure 4. Localization association process: a) supervised learning of the mapping between the environment
space and the topological location space; b) performance mode: the system predicts relative location,

processing a set of the selected ultrasonic range sensors readouts.
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Localization (3)

Then, during the performance mode, the network 1s able to retrieve the location of the robot within a
frame of the door neighborhood region, as long as the robot 1s actually placed somewhere n this predefined
region. The retrieved data has rather a qualitative meaning, due to the topological categorization of the
position and orientation coordinates. It bears however enough information to be useful for a door passing

locomotion task.
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