Learning, Logic, and Probability: A Unified View

Pedro Domingos

Dept. Computer Science \& Eng. University of Washington
(Joint work with Stanley Kok, Matt Richardson and Parag Singla)

Overview

- Motivation
- Background
- Markov logic networks
- Inference in MLNs
- Learning MLNs
- Experiments
- Discussion

The Way Things Were

- First-order logic is the foundation of computer science
- Problem: Logic is too brittle
- Programs are written by hand
- Problem: Too expensive, not scalable

The Way Things Are

- Probability overcomes the brittleness
- Machine learning automates programming
- Their use is spreading rapidly
- Problem: For the most part, they apply only to vectors
- What about structured objects, class hierarchies, relational databases, etc.?

The Way Things Will Be

- Learning and probability applied to the full expressiveness of first-order logic
- This talk: First approach that does this
- Benefits: Robustness, reusability, scalability, reduced cost, human-friendliness, etc.
- Learning and probability will become everyday tools of computer scientists
- Many things will be practical that weren't before

State of the Art

- Learning: Decision trees, SVMs, etc.
- Logic: Resolution, WalkSat, Prolog, description logics, etc.
- Probability: Bayes nets, Markov nets, etc.
- Learning + Logic: Inductive logic prog. (ILP)
- Learning + Probability: EM, K2, etc.
- Logic + Probability: Halpern, Bacchus, KBMC, PRISM, etc.

Learning + Logic + Probability

- Recent (last five years)
- Workshops: SRL ['00, ‘03, ‘04], MRDM ['02, '03, ‘04]
- Special issues: SIGKDD, Machine Learning
- All approaches so far use only subsets of first-order logic
- Horn clauses (e.g., SLPs [Cussens, 2001; Muggleton, 2002])
- Description logics (e.g., PRMs [Friedman et al., 1999])
- Database queries (e.g., RMNs [Taskar et al., 2002])

Questions

- Is it possible to combine the full power of first-order logic and probabilistic graphical models in a single representation?
- Is it possible to reason and learn efficiently in such a representation?

Markov Logic Networks

- Syntax: First-order logic + Weights
- Semantics: Templates for Markov nets
- Inference: KBMC + MCMC
- Learning: ILP + Pseudo-likelihood
- Special cases: Collective classification, link prediction, link-based clustering, social networks, object identification, etc.

Overview

- Motivation
- Background
- Markov logic networks
- Inference in MLNs
- Learning MLNs
- Experiments
- Discussion

Markov Networks

- Undirected graphical models

- Potential functions defined over cliques

$$
\begin{array}{r}
P(X)=\frac{1}{Z} \prod_{c} \Phi_{c}(X) \quad Z=\sum_{X} \prod_{c} \Phi_{c}(X) \\
\Phi(A, B)= \begin{cases}3.7 & \text { if A and } \mathrm{B} \\
2.1 & \text { if A and } \overline{\mathrm{B}} \\
0.7 & \text { otherwise }\end{cases} \\
\Phi(B, C, D)= \begin{cases}2.3 & \text { if B and } \overline{\mathrm{C}} \text { and } \mathrm{D} \\
5.1 & \text { otherwise }\end{cases}
\end{array}
$$

Markov Networks

- Undirected graphical models

- Potential functions defined over cliques

$$
\begin{array}{r}
P(X)=\frac{1}{Z} \exp \left(\sum_{i} \frac{w_{i} f_{i}(X)}{\quad} \quad Z=\sum_{X} \exp \left(\sum_{i} w_{i} f_{i}(X)\right)\right. \\
f_{\text {Weight of Feature } i}(A, B)= \begin{cases}1 & \text { if A and B } \\
0 & \text { otherwise }\end{cases} \\
f(B, C, D)= \begin{cases}1 & \text { if B and } \overline{\mathrm{C}} \text { and } \mathrm{D} \\
0 & \end{cases}
\end{array}
$$

First-Order Logic

- Constants, variables, functions, predicates E.g.: Anna, X, mother_of(X), friends(X, Y)
- Grounding: Replace all variables by constants E.g.: friends (Anna, Bob)
- World (model, interpretation): Assignment of truth values to all ground predicates

Example of First-Order KB

Smoking causes cancer
Friends either both smoke or both don't smoke

Example of First-Order KB

$$
\begin{aligned}
& \forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x) \\
& \forall x, y \text { Friends }(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))
\end{aligned}
$$

Overview

- Motivation
- Background
- Markov logic networks
- Inference in MLNs
- Learning MLNs
- Experiments
- Discussion

Markov Logic Networks

- A logical KB is a set of hard constraints on the set of possible worlds
- Let's make them soft constraints:

When a world violates a formula, It becomes less probable, not impossible

- Give each formula a weight
(Higher weight \Rightarrow Stronger constraint)
$P($ world $) \propto \exp \left(\sum\right.$ weights of formulas it satisfies $)$

Definition

- A Markov Logic Network (MLN) is a set of pairs (F, w) where
- F is a formula in first-order logic
- w is a real number
- Together with a set of constants, it defines a Markov network with
- One node for each grounding of each predicate in the MLN
- One feature for each grounding of each formula F in the MLN, with the corresponding weight w

Example of an MLN

$1.5 \quad \forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$
$1.1 \forall x, y \operatorname{Friends}(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$
Suppose we have two constants: Anna (A) and Bob (B)

Example of an MLN

1.5	$\forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$
1.1	$\forall x, y \operatorname{Friends}(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$

Suppose we have two constants: Anna (A) and Bob (B)

```
Friends(A,B)
```


Example of an MLN

$$
\begin{array}{l|l}
1.5 & \forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x) \\
1.1 & \forall x, y \operatorname{Friends}(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))
\end{array}
$$

Suppose we have two constants: Anna (A) and Bob (B)

```
Friends(A,B)
```


Example of an MLN

$$
\begin{array}{l|l}
1.5 & \forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x) \\
1.1 & \forall x, y \operatorname{Friends}(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))
\end{array}
$$

Suppose we have two constants: Anna (A) and Bob (B)

More on MLNs

- Graph structure: Arc between two nodes iff predicates appear together in some formula
- MLN is template for ground Markov nets
- Typed variables and constants greatly reduce size of ground Markov net
- Functions, existential quantifiers, etc.
- MLN without variables = Markov network (subsumes graphical models)

MLNs Subsume FOL

- Infinite weights \Rightarrow First-order logic
- Satisfiable KB, positive weights \Rightarrow Satisfying assignments = Modes of distribution
- MLNs allow contradictions between formulas
- How to break KB into formulas?
- Adding probability increases degrees of freedom
- Knowledge engineering decision
- Default: Convert to clausal form

Overview

- Motivation
- Background
- Markov logic networks
- Inference in MLNs
- Learning MLNs
- Experiments
- Discussion

Inference

- Given query predicate(s) and evidence 1. Extract minimal subset of ground Markov network required to answer query

2. Apply probabilistic inference to this network (Generalization of KBMC [Wellman et al., 1992])

Grounding the Template

- Initialize Markov net to contain all query preds
- For each node in network
- Add node's Markov blanket to network
- Remove any evidence nodes
- Repeat until done

Example Grounding

```
1.5 \forallx Smokes (x) }=>\mathrm{ Cancer (x)
1.1 }\forallx,y\mathrm{ Friends }(x,y)=>(\operatorname{Smokes}(x)\Leftrightarrow\mathrm{ Smokes }(y)
```


$P($ Cancer $(B) \mid$ Smokes (A), Friends (A, B), Friends($B, A)$)

Example Grounding

```
1.5 \forallx Smokes (x) }=>\mathrm{ Cancer (x)
1.1 }\forallx,y\mathrm{ Friends }(x,y)=>(\operatorname{Smokes}(x)\Leftrightarrow\mathrm{ Smokes }(y)
```


$P($ Cancer $(B) \mid$ Smokes (A), Friends (A, B), Friends($B, A)$)

Example Grounding

```
1.5 \forallx Smokes(x) => Cancer(x)
1.1 }\forallx,y\operatorname{Friends}(x,y)=>(\operatorname{Smokes}(x)\Leftrightarrow\operatorname{Smokes}(y)
```


$P($ Cancer $(B) \mid$ Smokes (A), Friends (A, B), Friends($B, A)$)

Example Grounding

```
1.5 \forallx Smokes ( }x\mathrm{ ) }=>\mathrm{ Cancer ( }x\mathrm{ )
1.1 }\forallx,y\mathrm{ Friends }(x,y)=>(\operatorname{Smokes}(x)\Leftrightarrow\mathrm{ Smokes }(y)
```


Example Grounding

```
1.5 \forallx Smokes ( }x\mathrm{ ) }=>\mathrm{ Cancer ( }x\mathrm{ )
1.1 }\forallx,y\mathrm{ Friends }(x,y)=>(\operatorname{Smokes}(x)\Leftrightarrow\mathrm{ Smokes }(y)
```


P(Cancer(B) | Smokes(A), Friends(A,B), Friends(B,A))

Example Grounding

```
1.5 \forallx Smokes (x) }=>\mathrm{ Cancer (x)
1.1 }\forallx,y\mathrm{ Friends }(x,y)=>(\operatorname{Smokes}(x)\Leftrightarrow\mathrm{ Smokes }(y)
```


P(Cancer(B) | Smokes(A), Friends(A,B), Friends(B,A))

Example Grounding

```
1.5 \forallx Smokes(x) }=>\mathrm{ Cancer( }x\mathrm{ )
1.1 }\forallx,y Friends(x,y)=>(Smokes(x)\Leftrightarrow\operatorname{Smokes}(y)
```


$P($ Cancer $(B) \mid$ Smokes (A), Friends (A, B), Friends($B, A)$)

Example Grounding

$1.5 \quad \forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$
$1.1 \forall x, y \operatorname{Friends}(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$

$P($ Cancer $(B) \mid$ Smokes (A), Friends (A, B), Friends $(B, A))$

Example Grounding

$1.5 \forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$
$1.1 \forall x, y \operatorname{Friends}(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$
$\Phi= \begin{cases}e^{2.2} & \text { if } \operatorname{Smokes}(B) \\ e^{0} & \text { otherwise }\end{cases}$
$\Phi= \begin{cases}e^{1.5} & \text { if } \neg \operatorname{Smokes}(B) \vee \operatorname{Cancer}(B) \quad \operatorname{Cancer}(\mathrm{B}) \\ e^{0} & \text { otherwise }\end{cases}$
$P($ Cancer $(B) \mid$ Smokes (A), Friends (A, B), Friends($B, A)$)

Probabilistic Inference

- Recall

$$
P(X)=\frac{1}{Z} \exp \left(\sum_{i} w_{i} f_{i}(X)\right) \quad Z=\sum_{X} \exp \left(\sum_{i} w_{i} f_{i}(X)\right)
$$

- Exact inference is \#P-complete
- Conditioning on Markov blanket is easy:

$$
P(x \mid M B(x))=\frac{\exp \left(\sum_{i} w_{i} f_{i}(x)\right)}{\exp \left(\sum_{i} w_{i} f_{i}(x=0)\right)+\exp \left(\sum_{i} w_{i} f_{i}(x=1)\right)}
$$

- Gibbs sampling exploits this

Markov Chain Monte Carlo

- Gibbs Sampler

1. Start with an initial assignment to nodes
2. One node at a time, sample node given others
3. Repeat
4. Use samples to compute $\mathrm{P}(\mathrm{X})$

- Apply to ground network
- Many modes \Rightarrow Multiple chains
- Initialization: MaxWalkSat [Selman et al., 1996]

Overview

- Motivation
- Background
- Markov logic networks
- Inference in MLNs
- Learning MLNs
- Experiments
- Discussion

Learning

- Data is a relational database
- Closed world assumption
- Learning structure
- Corresponds to feature induction in Markov nets
- Learn / modify clauses
- Inductive logic programming
(e.g., CLAUDIEN [De Raedt \& Dehaspe, 1997])
- Learning parameters (weights)

Learning Weights

- Maximize likelihood (or posterior)
- Use gradient ascent

$$
\begin{aligned}
& \frac{d}{d w_{i}} \log P(X)=\boxed{f_{i}(X)}-E_{Y}\left[f_{i}(Y)\right] \\
& \\
& \begin{array}{|l}
\text { Feature count according to data } \\
\text { Feature count according to model } \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

- Requires inference at each step (slow!)

Pseudo-Likelihood [Besag, 1975]

$$
P L(X) \equiv \prod_{x} P(x \mid M B(x))
$$

- Likelihood of each variable given its Markov blanket in the data
- Does not require inference at each step
- Very fast gradient ascent
- Widely used in spatial statistics, social networks, natural language processing

MLN Weight Learning

- Parameter tying over groundings of same clause
- Maximize pseudo-likelihood using conjugate gradient with line minimization

$$
\nabla_{i}=\sum_{x} \text { nsat }_{i}(x)-\left[p(x=0) n s a_{i}(x=0)+p(x=1) \text { nsat }_{i}(x=1)\right]
$$

where nsat ${ }_{i}(x=v)$ is the number of satisfied groundings of clause i in the training data when x takes value v

- Most terms not affected by changes in weights
- After initial setup, each iteration takes O(\# ground predicates x \# first-order clauses)

Overview

- Motivation
- Background
- Markov logic networks
- Inference in MLNs
- Learning MLNs
- Experiments
- Discussion

Domain

- University of Washington CSE Dept.
- 24 first-order predicates:

Professor, Student, TaughtBy, AuthorOf, AdvisedBy, etc.

- 2707 constants divided into 11 types:

Person (400), Course (157), Paper (76), Quarter (14), etc.

- 8.2 million ground predicates
- 9834 ground predicates (tuples in database)

Systems Compared

- Hand-built knowledge base (KB)
- ILP: CLAUDIEN [De Raedt \& Dehaspe, 1997]
- Markov logic networks (MLNs)
- Using KB
- Using CLAUDIEN
- Using KB + CLAUDIEN
- Bayesian network learner [Heckerman et al., 1995]
- Naïve Bayes [Domingos \& Pazzani, 1997]

Sample Clauses in KB

- Students are not professors
- Each student has only one advisor
- If a student is an author of a paper, so is her advisor
- Advanced students only TA courses taught by their advisors
- At most one author of a given paper is a professor

Methodology

- Data split into five areas:

Al, graphics, languages, systems, theory

- Leave-one-area-out testing
- Task: Predict AdvisedBy(x, y)
- All Info: Given all other predicates
- Partial Info: With Student(x) and Professor(x) missing
- Evaluation measures:
- Conditional log-likelihood (KB, CLAUDIEN: Run WalkSat 100x to get probabilities)
- Area under precision-recall curve

Results

System	All Info		Partial Info	
	CLL	Area	CLL	Area
MLN(KB+CL)	-0.044	0.27	-0.040	0.25
MLN(KB)	-0.047	0.25	-0.043	0.20
MLN(CL)	-0.341	0.02	-0.852	0.03
KB	-0.124	0.16	-0.067	0.08
CL	-0.255	0.03	-0.371	0.04
NB	-0.218	0.17	-0.059	0.19
BN	-0.095	0.02	-0.166	0.04

Results: All Info

Results: Partial Info

Efficiency

- Learning time: 88 mins
- Time to infer all 4900 AdvisedBy predicates:
- With complete info: 23 mins
- With partial info: 24 mins (10,000 samples)

Overview

- Motivation
- Background
- Markov logic networks
- Inference in MLNs
- Learning MLNs
- Experiments
- Discussion

Related Work

- Knowledge-based model construction [Wellman et al., 1992; etc.]
- Stochastic logic programs [Muggleton, 1996; Cussens, 1999; etc.]
- Probabilistic relational models [Friedman et al., 1999; etc.]
- Relational Markov networks
[Taskar et al., 2002]
- Etc.

Special Cases of Markov Logic

- Collective classification
- Link prediction
- Link-based clustering
- Social network models
- Object identification
- Etc.

Future Work: Inference

- Lifted inference
- Better MCMC (e.g., Swendsen-Wang)
- Belief propagation
- Selective grounding
- Abstraction, summarization, multi-scale
- Special cases
- Etc.

Future Work: Learning

- Faster optimization
- Beyond pseudo-likelihood
- Discriminative training
- Learning and refining structure
- Learning with missing info
- Learning by reformulation
- Etc.

Future Work: Applications

- Object identification
- Information extraction \& integration
- Natural language processing
- Scene analysis
- Systems biology
- Social networks
- Assisted cognition
- Semantic Web
- Etc.

Conclusion

- Computer systems must learn, reason logically, and handle uncertainty
- Markov logic networks combine full power of first-order logic and prob. graphical models
- Syntax: First-order logic + Weights
- Semantics: Templates for Markov networks
- Inference: MCMC over minimal grounding
- Learning: Pseudo-likelihood and ILP
- Experiments on UW DB show promise

