
Hybrid Intelligent Systems

Lecture 5. Part 2.
Unsupervised NN for clustering. 

Adaptive Resonance Theory
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Definition

• Clustering is the process of partitioning a 
set of objects into subsets based on some 
measure of similarity (or dissimilarity) 
between pairs of the objects.
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Cluster Analysis

• Goals
– Organize information about data so that relatively 

homogeneous groups (clusters) are formed and 
describe their unknown properties.

– Find useful and interesting groupings of samples.
– Find representatives for homogeneous groups.

• Two components of cluster analysis.
– The (dis)similarity measure between two data 

samples.
– The clustering algorithm.



UCLab, Kyung Hee University,          
Andrey Gavrilov

4

Hierarchy of clusters
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Display of hierarchy as tree
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Minimum-Distance Clustering
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Vehicle Example

Vehicle Top speed
km/h

Colour Air
resistance

Weight
Kg

V1 220 red 0.30 1300
V2 230 black 0.32 1400
V3 260 red 0.29 1500
V4 140 gray 0.35 800
V5 155 blue 0.33 950
V6 130 white 0.40 600
V7 100 black 0.50 3000
V8 105 red 0.60 2500
V9 110 gray 0.55 3500
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Vehicle Clusters
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Terminology
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Distance/Similarity Measures
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Distance/Similarity Measures (2) 
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Distance/Similarity Measures (3)
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Distance/Similarity Measures (4)
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Adaptive Resonance Theory (ART)

• One of the nice features of human memory is its 
ability to learn many new things without 
necessarily forgetting things learned in the past.

• Stephen Grossberg: Stability-Plasticity dilemma
(1)How can a learning system remain adaptive 

(plastic) in response to significant input, yet 
remain stable in response to irrelevant input?

(2)How does the system known to switch between 
its plastic and its stable modes?

(3)How can the system retain previously learned 
information while continuing to learn new things?
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Basic Concept of ART
• A key to solving the stability-plasticity dilemma is 

to add a feedback mechanism between the 
competitive layer and the input layer of a 
network.

• Grossberg and Carpenter: ART model
• ART is one of the unsupervised learning models.
• This kind of model was first established in the 

early 1960.
• Grossberg introduced the ART in 1976.
• G.A. Carpenter continued the research in ART.
• Now many modifications of ART exist: ART-1, 

ART-2, FuzzyART, ARTMAP,  
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ART Based Architectures
• Adaptive Resonance Theory by Grossberg 

(1976)
• Family of ART neural network architectures

– unsupervised data classification
• ART 1 binary patterns (1987)
• ART 2 analog patterns (1987)
• fuzzy ART generalization of ART1 in fuzzy set    

domain

– supervised mapping
• ART-MAP
• fuzzy ART-MAP (1992)
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Basic Concept of ART (2)

• ART 1: requires that the input vectors be binary
• ART 2: is suitable for processing analog, or gray 

scale, patterns
• ART gets its name from the particular way in 

which learning and recall interplay in the network.
• In physics, resonance occurs when a small-

amplitude vibration of the proper frequency 
causes a large-amplitude vibration in an 
electrical or mechanical system.
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Basic Concept of ART (3).
Basic algorithm of ART

• Step 1: Initialization. Start with no cluster 
prototype vectors

• Step 2: Apply new input vector I
• Step 3: Find the closest cluster prototype 

vector (if any) P
• Step 4: If P is too far from I then, create a 

new cluster, returning to step 2
• Step 5: Update the matched prototype 

vector (update P by moving it closer to I)
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The ART network (Carpenter and Grossberg 1988).
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Basic Concept of ART (5)
• Bji: Forward the output from F1 to F2 for competition.
• Tji: Forward the pattern of winner neuron to F1 for 

comparison.
• G1: To distinguish the feature of input pattern with 

stored patterns.
• G2: To reset the depressed neurons in F2 (i.e., reset 

losers).
• attentional subsystem: to rapidly classify the 

recognized patterns.
• orienting subsystem: to help attentional subsystem 

learn new patterns.
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ART-1 Model
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ART-1 Model (2)
• Input layer: input patterns or characteristic 

vectors. Activation function f(x)=x. inputs are 
binary values.

• Output layer: representing the clustering of 
training patterns. This is similar to SOFM 
except that SOFM has the neighborhood 
concept. Initially, there is only one output 
node. The number of output nodes increases 
when learning proceeds. When the stability is 
achieved, the learning process stops.
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ART-1 Model (3).
Algorithm

1. Set the network parameter: Nout=1. 
2. Set the initial weighting matrices:

3. Input the training vector X.
4. Calculate the matching value:

5. Find the max matching value in the output nodes:
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ART-1 Model (4).
Algorithm (continue)

(6) Calculate the similarity
value: 

(7) Test the similarity value:
If                           then go to step (8).
Otherwise go to step (9).

(8) Test whether there are output nodes applicable to the 
rule.

If Icount<Nout, then try the second max matching 
value in the output nodes.
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ART-1 Model (5).
Algorithm (continue)

Set Icount=Icount+1; net[j*]=0, go to step (5). 
otherwise
(a) generate new cluster:

(b) set the output values for output nodes:
if j=j*, then Y[j]=1
else Y[j]=0.

(c) go to step (3) (input new vector X)
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ART-1 Model (6).
Algorithm (continue)

(9) Adjust the weighting matrix 
(a) adjust the weights:

(b) set the output values for output nodes:
if j=j*, then Y[j]=1
else Y[j]=0.

(c) go to step (3) (input new vector X)
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ART-1 Model (7)
• Given an input vector: 

X=[1 1 1 1 1 0 0 0 0 0]
• Assume 5 output nodes. 

3 cases for comparisons.
• Case 1:
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ART-1 Model (8)
• Node 1: matching value=5/5.5=0.909, similarity 

value=5/5=1.0.
• Node 2: matching value=4/4.5=0.888, similarity 

value=4/5=0.8. 
• Node 3: matching value=3/3.5=0.857, similarity 

value=3/5=0.6.
• Node 4: matching value=2/2.5=0.8, similarity 

value=2/5=0.4.
• Node 5: matching value=1/1.5=0.667, similarity 

value=1/5=0.2.
• The matching value is proportional to similarity value.
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ART-1 Model (9)
• Case 2:
• Assume 6 output nodes.

]1,1,1,1,1,0,0,1,1,1[ ],1,1,1,1,1,0,0,1,1,1[
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ART-1 Model (10)
• Node 1: matching value=3/3.5=0.857, similarity 

value=3/5=0.6.
• Node 2: matching value=3/4.5=0.666, similarity 

value=3/5=0.6. 
• Node 3: matching value=3/5.5=0.545, similarity 

value=3/5=0.6.
• Node 4: matching value=3/6.5=0.462, similarity 

value=3/5=0.6.
• Node 5: matching value=3/7.5=0.4, similarity 

value=3/5=0.6.
• Node 6: matching value=3/8.5=0.353, similarity 

value=3/5=0.6.
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ART-1 Model (11)
• The same similarity value but different 

matching value.
• If the number of corresponding bits of 

output vectors to input vector are the 
same, the one with less ones in output 
vector will be selected for vigilance test.
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ART-1 Model (12)
• Case 3:
• Assume 3 output nodes.

]0,0,0,0,1,1,1,0,0,0[ ],0,0,0,0,1,1,1,0,0,0[
5.3

1
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ART-1 Model (13)
• Node 1: matching value=3/3.5=0.857, similarity 

value=3/5=0.6.
• Node 2: matching value=2/3.5=0.571, similarity 

value=2/5=0.4. 
• Node 3: matching value=1/3.5=0.286, similarity 

value=1/5=0.2.
• Node 4: matching value=0/3.5=0.0, similarity 

value=0/5=0.0.
• Although the number of 1’s in the output vector are the 

same, the matching value and similarity values are all 
different. But the matching value is proportional to 
similarity value.
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Continuous-Valued ART (ART-2)
• Procedures:
• Given a new training pattern, a MINNET 

(min net) is adopted to select the winner, 
which yields the min distance 

• Vigilance test: A neuron j* passes the 
vigilance test if

• where the vigilance value ρ
determines the radius of a cluster.

• If the winner fails the vigilance test, a 
new neuron unit k is created with weight          

.|||| jwx −

ρ<− |||| *jwx

.xw k =
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Continuous-Valued ART 
(ART-2) (2)

• If the winner passes the vigilance test, 
adjust the weight of the winner j* by

•

• where ||clusteri|| denotes the number 
of members in cluster i.
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Continuous-Valued ART (ART-2) (3)
• Effect of different order of pattern presentation:

– The ART is sensitive to the presenting order of 
the input patterns.

• Effect of vigilance thresholds:
– The smaller vigilance threshold leads to the more 

clusters are generated.
• Effect of re-clustering:

– Use the current centroids as the initial reference 
for clustering.

– Re-cluster one by one each of the training 
patterns.

– Repeat the entire process until there is no 
change of clustering during one entire sweep.   
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(1.58,1.6)pass test0.52(1.5,1.3)10

(1.6,1.7)pass test0.92(1.9,1.4)9

(1.13,0.45)pass test0.631(0.7,0.4)8

(1.45,1.85)pass test0.22(1.5,1.9)7

(0.3,1.3)pass test0.83(0.6,1.2)6

(0.0,1.4)fail⇒ new 
cluster

1.82(0.0,1.4)5

(1.27,0.47)pass test0.41(1.5,0.5)4

(1.4,1.8)fail⇒ new 
cluster

1.61(1.4,1.8)3

(1.15,0.45)pass test1.01(1.3,0.8)2

(1.0,0.1)new 
cluster

--(1.0,0.1)1

cluster 
3
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d
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cluster 1
centroid

decisiontest 
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winnerpatter
n

order

(a) Original order.
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(0.58,0.7
8)

pass test1.472(1.0,0.1)10

(1.52,1.2
8)

pass test0.841(1.3,0.8)9

(1.56,1.3
8)

pass test0.721(1.4,1.8)8

(1.6,1.28)pass test1.171(1.5,0.5)7

(0.43,1.0)pass test1.252(0.0,1.4)6

(0.65,0.8)pass test0.92(0.6,1.2)5

(1.63,1.5
3)

pass test0.751(1.5,1.9)4

(0.7,0.4)fail⇒ new 
cluster

1.951(0.7,0.4)3

(1.7,1.35)pass test0.51(1.9,1.4)2

(1.5,1.3)new 
cluster

--(1.5,1.3)1

cluster 2
centroid

cluster 1
centroid

decisiontest 
value

winnerpatternorder
The execution sequence of the ART-2  with the vigilance threshold 1.5.

(b) Reverse order


