Hybrid Intelligent Systems

Lecture 5. Part 4 Hopfield associative memory

Tasks solved by associative memory:

1) restoration of noisy image

2) rememoring of associations

Input image

half of image corrupted by noise

> Image – result of association

UCLap, Kyung Hee University Andrey Gavrilov

Hopfield model

Sub-type of recurrent neural nets •Fully recurrent •Weights are symmetric

Learning: **Hebb rule** (cells that fire together wire together) Can recall a memory, if presented with a corrupt or incomplete version

→ auto-associative or content-addressable memory

Hopfield Model (2)

Features of structure:

- Every neuron is connected with all others
- Connections are symmetric, i.e. for all *i* and $j = w_{ij} w_{ji}$
- Every neuron may be Input and output neuron
- Presentation of input is set of state of input neurons

UCLab, Kyung Hee University Andrey Gavrilov

Neurons in Hopfield Network

- The neurons are binary units
 - They are either active (1) or passive
 - Alternatively + or -
 - May be two variants of performance: (-1,1) or (0,1)
- The network contains *N* neurons
- The state of the network is described as a vector from 0 and 1 (or -1 and 1):

$$U = (u_1, u_2, ..., u_N) = (0, 1, 0, 1, ..., 0, 0, 1)$$

Updating the Hopfield Network (during recall)

- The state of the network changes at each time step. There are four updating modes:
 - Serial Random:
 - The state of a randomly chosen single neuron will be updated at each time step
 - Serial-Sequential :
 - The state of a single neuron will be updated at each time step, in a fixed sequence
 - Parallel-Synchronous:
 - All the neurons will be updated at each time step synchronously
 - Parallel Asynchronous:
 - The neurons that are not in refractoriness will be updated at the same time UCLab, Kyung Hee University

The updating Rule (1):

- Here we assume that updating is serial-Random
- Updating will be continued until a stable state is reached.
 - Each neuron receives a weighted sum of the inputs from other neurons:

$$h_j = \sum_{i=1}^N u_i . w_{j,i}$$

- If the input h_j is positive the state of the neuron will be 1, otherwise -1:

$$u_{j} = \begin{cases} 1 & \text{if } h_{j} \ge 0 \\ - \text{UCLab, Kylifng } h_{\text{GeViloversity}} \\ \text{Andrey Gavrilov} \end{cases}$$

Convergence of the Hopfield Network

- Does the network eventually reach a stable state (convergence)?
- To evaluate this a 'energy' value will be associated to the network:

$$E = -\frac{1}{2} \sum_{j} \sum_{\substack{i=1\\i \neq j}}^{N} w_{j,i} u_{i} u_{j}$$

 The system will be converged if the energy is minimized

The Energy Function:

• The energy function is similar to a multidimensional (N) terrain

Associative memory based on Hopfield model

- Two processes
 - Learning
 - Testing (using, recalling)

Learning

- Each pattern can be denoted by a vector from -1 and 1: $S_p = (-1,1,-1,1,...,-1,-1,1) = (s_1^p, s_2^p, s_3^p, ..., s_N^p)$
- If the number of patterns is m then:

$$W_{i,j} = \sum_{p=1}^{m} S_i^{p} S_j^{p}$$

- May be calculated without presentation of examples
- Hebbian Learning:
 - The neurons that fire together , wire together
 - For Hopfield model: Weight of link increases for neurons which fire together (with same states) and decreases if otherwise

Recalling

- Iteration process of calculation of states of neurons until convergence will be achieved
- Input neurons may be freeze (can not change its state), if input pattern has not noise and may be changed otherwise
- To obtain right pattern (one from stored during learning) it is needed to present on inputs enough large vector and model must have enough large information capacity

Example of preparing of data for learning working (task – estimation of prize of flat). Length of vector (N) - 29

		Number of storeys:			
		1	0000	Square of kitchen	
Destrict:		2	0001	4-6	00
Name 1	000	3	0010	7-8	01
Name 2	001	4	0011	9-10	10
Name 3	010	5	0100	11-12	11
Name 4	011	6	0101	Balcony	
Name 5	100	7	0111	no	00
Name 6	101	8	1000	balcony	01
		9	1001	loggia	10
Type of flat		10	1010	Balcony + loggia	11
no	00	11	1011	Phone	
Panel	01	12	1100	yes	0
Large size 10		13	1101	no	1
Monolith	11	14	1110	Prize	
		Material:		71-90	0000
Floor		panels	00	91-110	0001
1	0000	bricks	01	111-130	0010
2	0001	concrete	10	131-150	0011
3	0010	Square all	-	151-170	0100
4	0011	20-30	00	171-190	0101
5	0100	31-40	01	191-210	0110
6	0101	41-50	10	211-230	0111
7	0111	51-63	11	231-250	1000
8	1000	Square of rooms		251-270	1001
9	1001	10-15	000	271-290	1010
10	1010	16-20	001	291-310	1011
11	1011	21-25	010	311-330	1100
12	1100	26-30	011	331-350	1101
13	1101	31635ab Kyung Ha		351-370	1110 12
14	1110			371-390	1111 13
		Andrey Gav	/riiov 'č'	L	

Limitations of Hopfield associative memory

- The evoked pattern is sometimes not necessarily the most similar pattern to the input because local minimums
- Some patterns will be recall more than others
- Spurious states: non-original patterns because symmetry of weight matrix
- Information capacity: ≤0.15 N

 One of method of fighting with local minimums of E – to introduce in model of random process of updating of weights, i.e. to append to Hopfield model of Boltzmann machine