
Hybrid Intelligent Systems

Lecture 5. Part 4
Hopfield associative memory
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Tasks solved by associative memory:
1) restoration of noisy image                    2) rememoring of associations

Input image

Image – result
of association
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Hopfield model
Sub-type of recurrent neural nets

•Fully recurrent
•Weights are symmetric

Learning: Hebb rule (cells that fire 
together wire together)
Can recall a memory, if presented with a
corrupt or incomplete version

auto-associative or
content-addressable memory
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Hopfield Model (2)

X1 X2

X'1 X'2

XN-1 XN

X'N-1 X'N

Y1 Y2

YN-1 YN

Features of structure:
• Every neuron is connected with all others
• Connections are symmetric, i.e. for all i and j    wij – wji
• Every neuron may be Input and output neuron
• Presentation of input is set of state of input neurons
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Neurons in Hopfield Network

• The neurons are binary units
– They are either active (1) or passive
– Alternatively + or –
– May be two variants of performance: (-1,1) or (0,1)

• The network contains N neurons
• The state of the network is described as a 

vector from 0 and 1 (or -1 and 1):

)1,0,0,...,1,0,1,0(),...,,( 21 == NuuuU
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Updating the Hopfield Network (during 
recall)

• The state of the network changes at each time step. There are four 
updating modes:
– Serial – Random: 

• The state of a randomly chosen single neuron will be 
updated at each time step

– Serial-Sequential :
• The state of a single neuron will be updated at each time 

step, in a fixed sequence
– Parallel-Synchronous:

• All the neurons will be updated at each time step 
synchronously

– Parallel Asynchronous:
• The neurons that are not in refractoriness will be updated at 

the same time
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The updating Rule (1):

• Here we assume that updating is serial-Random
• Updating will be continued until a stable state is 

reached.
– Each neuron receives a weighted sum of the inputs 

from other neurons:

– If the input        is positive the state of the neuron will 
be 1, otherwise -1:
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Convergence of the Hopfield 
Network

• Does the network eventually reach a stable 
state (convergence)?

• To evaluate this a ‘energy’ value will be 
associated to the network: 

• The system will be converged if the energy is 
minimized
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The Energy Function:

• The energy function is similar to a 
multidimensional (N) terrain

Global Minimum

Local Minimum
Local Minimum
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Associative memory based on 
Hopfield model

• Two processes
– Learning
– Testing (using, recalling) 
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Learning 
• Each pattern can be denoted by a vector from -1 

and 1:

• If the number of patterns is m then: 

– May be calculated without presentation of examples

• Hebbian Learning:
– The neurons that fire together , wire together
– For Hopfield model: Weight of link increases for neurons 

which fire together (with same states) and decreases if 
otherwise
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Recalling
• Iteration process of calculation of states of 

neurons until convergence will be 
achieved

• Input neurons may be freeze (can not 
change its state), if input pattern has not 
noise and may be changed otherwise

• To obtain right pattern (one from stored 
during learning) it is needed to present on 
inputs enough large vector and model 
must have enough large information 
capacity 
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Example of preparing of data for learning working (task –
estimation of prize of flat). Length of vector (N) - 29

Destrict:
Name 1 000
Name 2 001
Name 3 010
Name 4 011
Name 5 100
Name 6 101

Type of flat
no 00
Panel 01
Large size 10
Monolith 11

Floor
1 0000
2 0001
3 0010
4 0011
5 0100
6 0101
7 0111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110

Number of storeys:
1 0000
2 0001
3 0010
4 0011
5 0100
6 0101
7 0111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
Material:
panels 00
bricks 01
concrete 10
Square all
20-30 00
31-40 01
41-50 10
51-63 11
Square of rooms
10-15 000
16-20 001
21-25 010
26-30 011
31-35 100
36-40 101

Square of kitchen
4-6 00
7-8 01
9-10 10
11-12 11
Balcony
no 00
balcony 01
loggia 10
Balcony + loggia 11
Phone
yes 0
no 1
Prize
71-90 0000
91-110 0001
111-130 0010
131-150 0011
151-170 0100
171-190 0101
191-210 0110
211-230 0111
231-250 1000
251-270 1001
271-290 1010
291-310 1011
311-330 1100
331-350 1101
351-370 1110
371-390 1111
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Limitations of Hopfield associative 
memory

• The evoked pattern is sometimes not 
necessarily the most similar pattern to the 
input because local minimums

• Some patterns will be recall more than 
others

• Spurious states: non-original patterns 
because symmetry of weight matrix 

• Information capacity: ≤0.15 N
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• One of method of fighting with local 
minimums of E – to introduce in model of 
random process of updating of weights, 
i.e. to append to Hopfield model of 
Boltzmann machine 


