
Hybrid Intelligent Systems

Lecture 6
Evolution Programming
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Any associations …
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Evolution based on:

• Reproduction with cross-over. Inheritance and 
mixture of features provide the keeping of useful 
features (stability) and variability (plasticity). 
Offspring always distinct from parents

• Selection of most perspective individuals in 
population for producing of next generation. 
Selection (in AL) is controlled by value of fitness-
function. It simulates natural selection (controlled by 
deaths).

• Mutation provides more strong variations than cross-
over
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The Simple Genetic Algorithm
1. Generate an initial random population of M 

individuals (i.e. programs)
2. Repeat for N generations

1. Calculate a numeric fitness for each individual
2. Repeat until there are M individuals in the new 

population
1. Choose two parents from the current population 

probabilistically based on fitness (i.e. those with a higher 
fitness are more likely to be selected)

2. Cross them over at random points, i.e. generate children based 
on parents (note external copy routine)

3. Mutate with some small probability
4. Put offspring into the new population
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Genetic 
algorithm
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An Abstract Example

Distribution of Individuals in Generation 0

Distribution of Individuals in Generation N

Fitness function



UCLab, Kyung Hee University,          
Andrey Gavrilov

9



UCLab, Kyung Hee University,          
Andrey Gavrilov

10

Crossover
Typically use bit strings, but could use other structures

Bit Strings:  Genotype representing some phenotype

Individual 1: 001010001 Individual 2: 100110110

New child : 100110001 has characteristics of

both parents, hopefully 

better than before

Bit string can represent whatever we want for our particular 
problem; solution to a complex equation, logic problem, 
classification of some data, aesthetic art, music, etc.
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Simple example: Find MAX of a function

To keep it simple, use y=x so bigger X is better
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Chromosome Representation
Let's make our individuals just be numbers along the X axis, 
represented as bit strings, and initialize them randomly:

Individual 1 : 000000000
Individual 2 : 001010001
Individual 3 : 100111111
….
Individual N : 110101101

Fitness function:  Y value of each solution.  This is the fitness 
function.  Note that even for NP complete problems, we can often
compute a fitness (remember that solutions for NP Complete 
problems can be verified in Polynomial time).
Say for some parents we pick:    100111111  and 110101101



UCLab, Kyung Hee University,          
Andrey Gavrilov

13

Crossover
Crossover:  Randomly select crossover point, and swap code

100111111  and 110101101
Individual 1: 100111111 Individual 2: 110101101

New child : 110101111 has characteristics of
both parents, hopefully 
better than before

Or could have done:

Individual 1: 100111111 Individual 2: 110101101

New child: 100111101 ; not better in this case
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Mutation
Mutation: Just randomly flip some bits ; low probability of doing this

Individual: 011100101
New: 111100101

Mutation keeps the gene pool active and helps prevent stagnation.
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– NP-Complete
– NP-Complete problems are good candidates for 

applying GA’s
• Problem space too large to solve exhaustively
• Multiple “agents” (each individual in the 

population) provides a good way to probe the 
landscape of the problem space

• Generally not guaranteed to solve the problem 
optimally

Second Example : TSP
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• Formal definition for the TSP
– Start with a graph G, composed of edges E and 

vertices V, e.g. the following has 5 nodes, 7 edges, 
and costs associated with each edge:

– Find a loop (tour) that visits each node exactly once 
and whose total cost (sum of the edges) is the 
minimum possible
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• Easy on the graph shown on the previous slide; becomes 
harder as the number of nodes and edges increases

• Adding two new edges results in five new paths to 
examine

• For a fully connected graph with n nodes, n! loops 
possible
– Impractical to search them all for more than about 25 nodes

• Excluding degenerate graphs, an exponential number of 
loops possible in terms of the number of nodes/edges
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• Guaranteed optimal solution to TSP
– Evaluate all loops

• Approximation Algorithms 
– May achieve optimal solution but not guaranteed
– Nearest Neighbor
– Find minimum cost of edges to connect each node 

then turn into a loop
– Heuristic approaches, simulated annealing
– Genetic Algorithm
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• A genetic algorithm approach
– Randomly generate a population of agents

• Each agent represents an entire solution, i.e. a random ordering of each 
node representing a loop

– Given nodes 1-6, we might generate 423651 to represent the loop of 
visiting 4 first, then 2, then 3, then 6, then 5, then 1, then back to 4

– In a fully connected graph we can select any ordering, but in a partially 
connected graph we must ensure only valid loops are generated

– Assign each agent a fitness value
• Fitness is just the sum of the edges in the loop;  lower is more fit

– Evolve a new, hopefully better, generation of the same number 
of agents

• Select two parents randomly, but higher probability of selection if 
better fitness

• New generation formed by crossover and mutation
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• Crossover
– Must combine parents in a way that preserves valid 

loops
– Typical cross method, but invalid for this problem

Parent 1 = 423651 Parent 2 = 156234
Child 1 = 423234 Child 2 = 156651

– Use a form of order-preserving crossover:
Parent 1 = 423651 Parent 2 = 156234
Child 1 =  123654

• Copy positions over directly from one parent, fill in from 
left to right from other parent if not already in the child

• Mutation
– Randomly swap nodes (may or may not be 

neighbors)
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Why does this work?
• How does a GA differ from random search?

– Pick best individuals and save their “good” properties, not random ones 
• What information is contained in the strings and their fitness 

values, that allows us to direct the search towards improved 
solutions? 
– Similarities among the strings with high fitness value suggest a relationship 

between those similarities and good solutions. 
• A schema is a similarity template describing a subset of strings with 

similarities at certain string positions. 
• Crossover leaves a schema unaffected if it doesn't cut the schema. 
• Mutation leaves a schema unaffected with high probability (since mutation has 

a low probability). 
• Highly-fit, short schema (called building blocks) are propagated from 

generation to generation with high probability. 
– Competing schemata are replicated exponentially according to their fitness 

value. 
– Good schemata rapidly dominate bad ones. 
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TSP Example: 30 Cities
(J.Abonyi, J.Madar)
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Solution (Distance=941)

TSP30 (Performance = 941)
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Solution (Distance=800)
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Solution (Distance=652)

TSP30 (Performance = 652)
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Best solution (Distance=420)
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TSP30 Solution (Performance = 420)
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Overview of performance
TSP30 - Overview of Performance
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Advantages of GA’s
Easy to understand and implement
Easy to adapt to many problems
Work surprisingly well
Modular, separate from application
Supports multi-objective optimization
Good for “noisy” environments
Inherently parallel; easily distributed
Many variations are possible 

(elitism, niche populations, hybrid w/other techniques)
Less likely to get stuck in a local minima due to randomness
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Problems of GA’s
• Need diverse genetic pool, or we can get inbreeding : 

stagnant population base

• No guarantee that children will be better than parents
could be worse, could lose a super individual

elitism- when we save the best individual
• Very slow methods for optimization
• Sometimes definition of task and programming are difficult.
Effectiveness of usage of GA depend on definition of task
(e.g. structure of chromosome and semantics of genes) 


