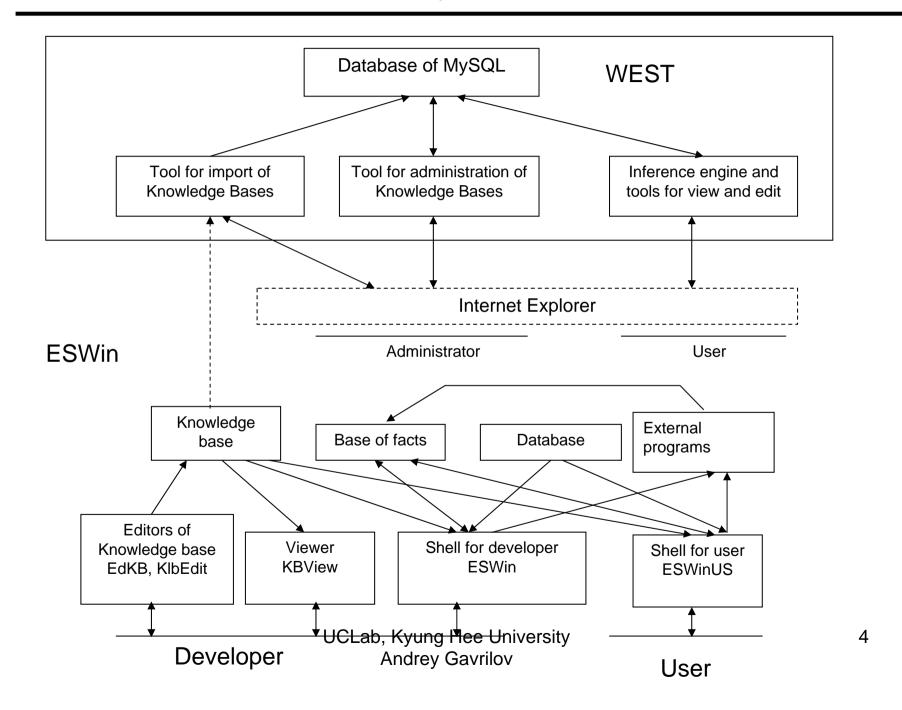
Hybrid Intelligent Systems

Lecture 9

ESWin – toolkit for development of hybrid expert systems

ESWin


(Copyright Insycom Ltd., A.Gavrilov, 1999-2005)

- Consists of:
 - Language for description of knowledge base
 - Expert shell for developer
 - Expert shell for end user
 - Two kinds of editors of Knowledge Base (KB)
 - Program utility for view and diagnostics of KB
 - Program utility for improvement of structure of KB
- Solving of task by backward fuzzy inference
- Aims to using for development of expert systems for diagnostics, identification, support of making of decisions
- Used in several Universities of Russia for teaching of Al and related courses
- Downloaded (demo) by several foreign users for study
- Demo of ESWin is used in KHU in course "Technologies of Expert Systems"

Expert shell supports:

- Knowledge representation by
 - Rules
 - Frames,
 - Linguistic variables
- Solving of tasks by backward fuzzy inference
- Nonmonotonic reasoning
- Usage of facts from databases by SQL-query
- Usage of graphics for comments to questions or as results of rule's execution
- Execution of external programs during inference

Structure of ESWin and its ability of connection with WEST

Expert shell for Internet WEST

- Component WEST 1.0 may be used as independent product and consists of:
 - Backward fuzzy inference engine,
 - Tool for administration of Knowledge Base,
 - Tool for import of Knowledge Base from ESWin.
- Developed in MySQL and PHP
- Accessible for demonstration from <u>http://vt.cs.nstu.ru/~expsystem/</u>
- That's all about WEST here

Sources of facts for inference in ESWin

- Dialog with user
- Databases, SQL-query forming automatically during dialog
- External special programs been developed in case that capabilities of ESWin are not enough for solving of task
- For example, as external program may be any neural network or simulation program

Knowledge base

Consists of:

- TITLE = <name of Expert System>
- COMPANY = <name of organization owner of ES>
- Frame with name Goal with names of tasks solved by expert system
- Other frames describing of domain
- Rules for solving of tasks
- Descriptions of linguistic variables (if ones are used in expert system) in separate file

Structure of frame

Types of frames:

- Class
- Instance
- Template

Types of slots:

- Symbol
- Number
- •LV linguistic variable

Examples of frames

```
Frame=Parameters
 Parent:
 Area: (Computer Science; Technology;
Medicine)
 Task: (CAD; CAM; Monitoring; Diagnostics)
EndF
Frame=Initial data
Parent:
Type of a body (symbol) [Choose type of a body]: (Sedan; Cabriolet;
Unified; Hatchback; Minivan)
Type of a box of transfers (symbol) [Choose type of a box of transfers]:
(Automatic; Manual)
Type of the engine (symbol) [Choose type of the engine]: (Diesel;
Petrol)
Price (number) [how many money you are ready to spend?]:
EndF
```

Structure of rules

Relations in conditions can be:

```
RULE (number)
⟨condition 1⟩
<condition 2>
(condition m)
DO
(conclusion 1)
(conclusion 2)
(conclusion n)
ENDR
```

```
EQ
                  Equal;
         or =
GT
                  It is more:
         or >
LT
         or < It is less;
NE
                  Not equal;
         or <>
         Two frames are connected by the relation
IN
"part of" (there is a connection through slot OWNER).
Relations in the conclusions can be:
EQ
                  Equal (creation of the fact - slot in a
         or =
frame-instance);
IN
         Including in the frame-owner (creation of
connection - slot OWNER in the frame-instance);
DL
         Remove of slot in a frame-instance;
EX
         Execute of the external program;
FR
         Output of a frame-instance;
GO
         Execute of the rule;
         Output of the message to the screen;
MS
GR
         Output to the screen of a graphic file (formats
```

Examples of rules

```
Rule 1
=(Initial data.Type of a body; Unified) 100
=(Initial data.Type of the engine; Diesel) 100
=(Initial data.Type of a box of transfers; Automatic) 100
<(Initial data.price; 1000) 100
Do
= (Goal.To buy the car; Under your choice approaches Toyota Caldina 1988) 100
EndR
Rule 1
  EQ(Parameters.Area; Medicine)
  EQ(Parameters.Task; Diagnostics)
Do
 EQ(Knowledge representation method; Fuzzy Rules) 90
  EQ(Knowledge representation method; Frames) 95
 EQ(Tool for Developer; ESWin) 95
EndR
```

Linguistic variables

- Parameters describing of linguistic variable:
 - Name
 - Set of symbolic values
 - For every symbolic values
 - Minimal numeric value
 - Maximal numeric value
 - Number of values of membership function
 - Set of values of membership function

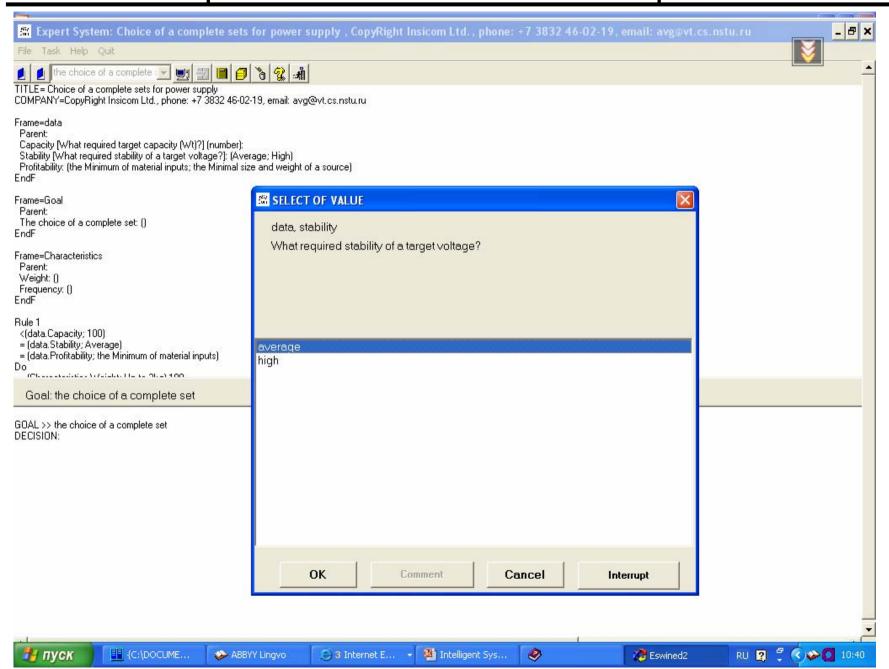
Example of usage of linguistic variable

```
Frame=You
 Parent:
 Employment: (Unemployment; Engineer; Businessman)
Age (lingvar) [How are You old ?]: (young; old)
EndF
Frame=She
 Parent: Women
Age (lingvar) [How is her age?]: (young; middle age)
EndF
        Rule 1
         EQ(You.Age; young)
         EQ(She.Age; young)
         EQ(You.Employment; Businessman)
        Do
         EQ(Your chance of success is; Good)
        100
        EndRUCLab, Kyung Hee University
                  Andrey Gavrilov
```

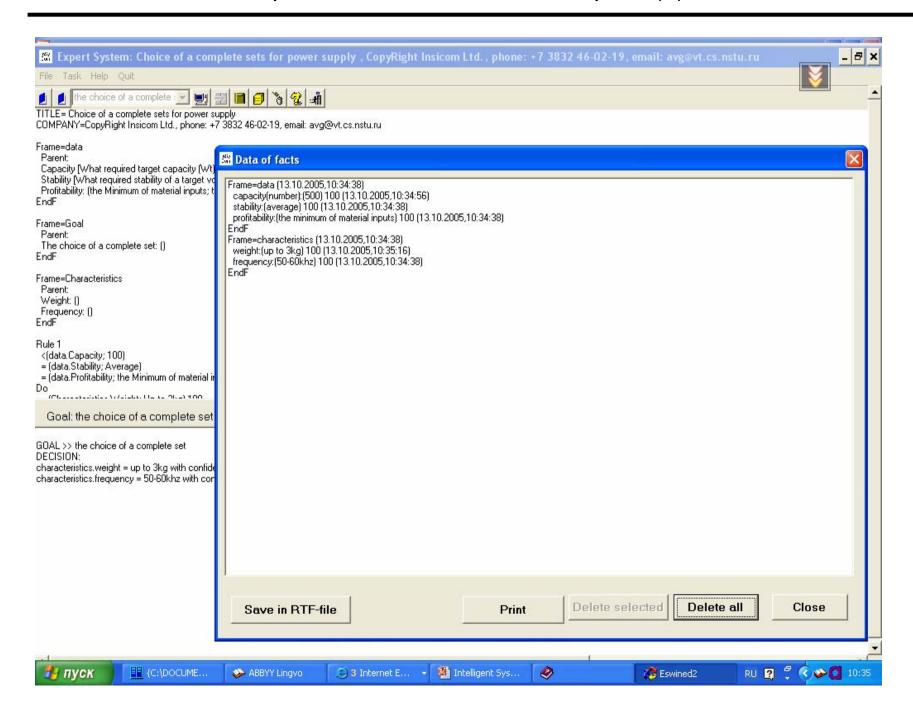
Example 1 of KB in ESWin (fragment)

Rule 2 EQ(Parameters.Area: Computer Science) EQ(Parameters.Task; Monitoring) TITLE=Demo Expert System for Creating of ES Dο COMPANY=CopyRight 2000 Insycom Ltd. EQ(Knowledge representation method; Rules) 100 EQ(Tool for Developer: C++) 100 Frame=Goal **EndR** Parent: Knowledge representation method: () Rule 3 Tool for Developer: () EQ(Parameters.Area; Technology) EndF EQ(Parameters.Task; Monitoring) Dο Frame=Parameters EQ(Knowledge representation method: Rules with Fuzzy) 80 Parent: EQ(Tool for Developer; ESWin) 80 Area: (Computer Science; Technology; Medicine) EQ(Tool for Developer; C++) 70 Task: (CAD: CAM: Monitoring: Diagnostics) **EndR** EndF Rule 4 Rule 1 EQ(Parameters.Area; Technology) EQ(Parameters.Area: Medicine) EQ(Parameters.Task; CAD) EQ(Parameters.Task: Diagnostics) Do Dο EQ(Knowledge representation method; Frames) 100 EQ(Knowledge representation method; Rules with Fuzzy) 90 EQ(Tool for Developer; Lisp) 95 EQ(Knowledge representation method; Frames) 95 EQ(Tool for Developer; ESWin) 70 EQ(Tool for Developer; ESWin) 95 **EndR EndR** Rule 5 EQ(Parameters.Area; Technology) EQ(Parameters.Task; CAM) Do UCLab, Kyung Hee University (Tool for Developer; ESWin) 90 14

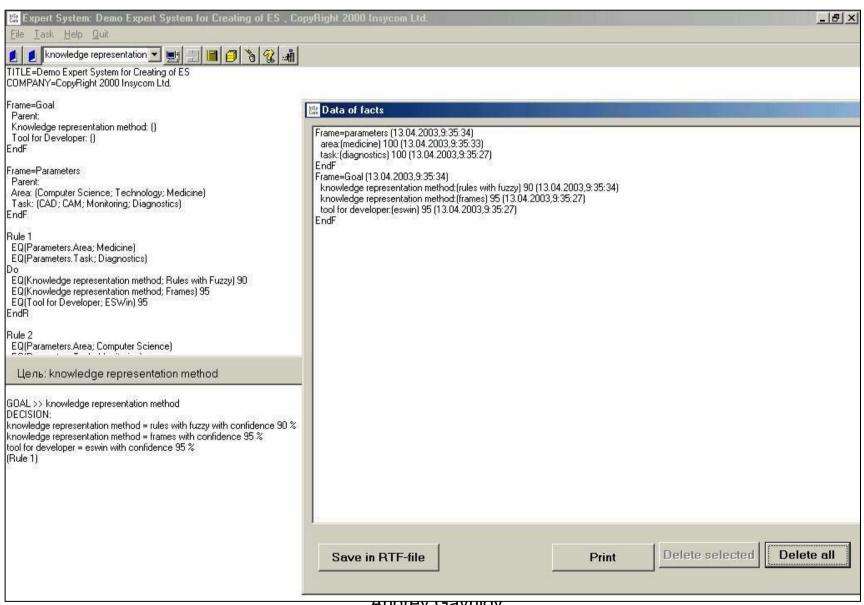
Andrey Gavrilov


Example 2 of KB in Eswin (fragment)

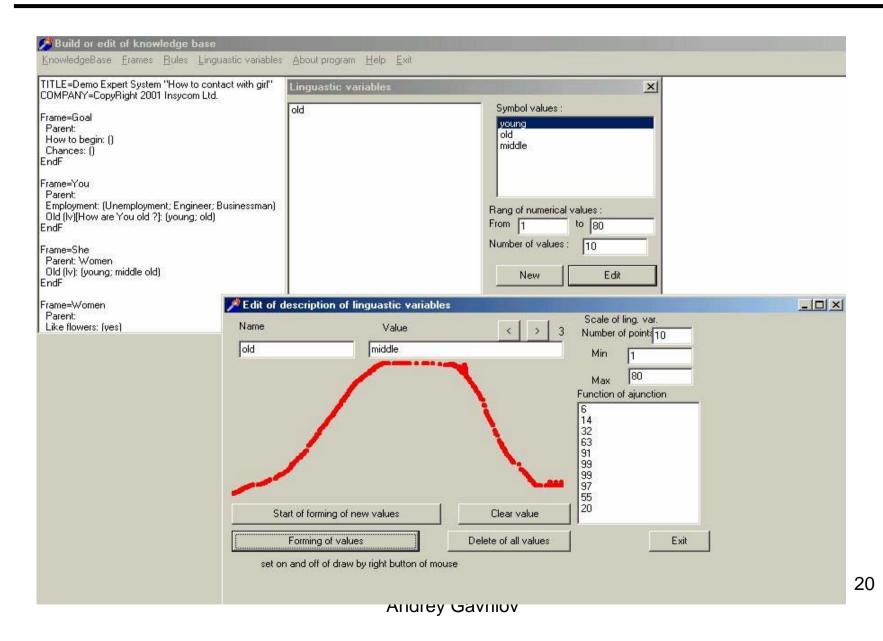
```
TITLE=Test of use "any"
COMPANY=Insycom Ltd.
                                                  Rule 2
Frame=Goal
                                                    EQ(Features.Area; Office)
 Parent:
                                                  Dο
 Test: ()
                                                    EQ(Components.Processor; to 1.5 GHz) 100
EndF
                                                  EndR
Frame=Features
                                                  Rule 3
 Parent:
                                                    EQ(Features.Area; CAD)
 Area: (Office; CAD; Games)
                                                  Do
EndF
                                                    EQ(Components.Monitor; 21") 100
                                                  EndR
Frame=Components
 Parent:
                                                  Rule 4
 Processor: (above 3 GHz; to 3 GHz; to 1.5 GHz)
                                                    EQ(Components.Processor; any)
 Monitor: (17"; 21")
                                                    EQ(Components.Monitor; any)
EndF
                                                  Do
                                                    EQ(Test; Components are selected) 100
Rule 1
                                                    FR(Action: Components) 100
 EQ(Features.Area; Games)
                                                  EndR
Do
 EQ(Components.Processor; above 3 GHz) 100
 EQ(Components.Monitor; 17") 100
EndR
```


Example 3 of KB in Eswin (fragment)

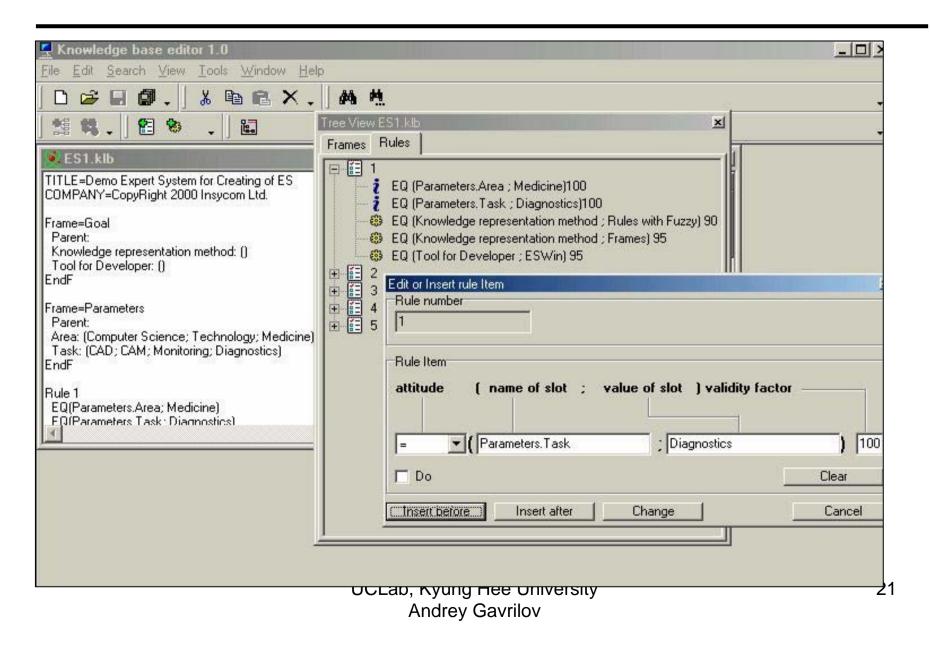
```
TITLE=Example of application with any features
COMPANY= "Insycom Ltd."
                                                      Frame=Salary
Frame=Goal
                                                           SumSalary (number): (0)
  Charge of Salary:
                                                      EndF
EndF
                                                      Rule 1
Frame=Profit
                                                                 <(Profit.Fund for Salary: 500)
  Fund for Salary [How much money may be directed
                                                      Do
for salary?](number):
                                                                 =(Charge of Salary; There is no sense)
EndF
                                                      EndR
Frame=Men
                                                      Rule 2
   Position [Position of employee?]:
                                                                 >(Profit.Fund for Salary; 499)
      *Name [Name of employee?]:
                                                                 =(Men.Name; any)
EndF
                                                      Do
                                                           =(Charge of Salary; is successfull)
Frame=Name
                                                           =(Salary.SumSalary;
  parent: Men
                                                      #Salary.SumSalary+Name.How much)
  *How many [How many to charge ($)?] (number):
                                                           FR(Frame: Salary)
EndF
                                                      EndR
```


Expert shell ESWin for developers

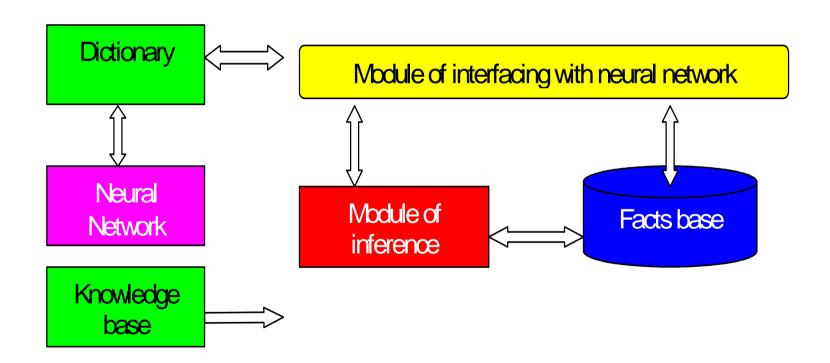
Expert shell ESWin for developers (2)



Editor of knowledge base



Andrey Gaymov

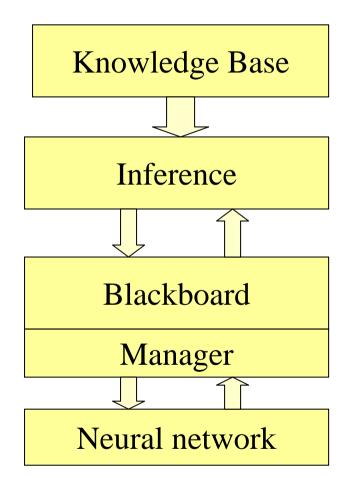

Editor of KB (editing of linguistic variables)

Other editor of KB

In present time the version of ESWin is developed for creating hybrid expert systems with neural networks

Example of description of protocol between Expert Shell and Neural Network in XML

```
<MODULE source=ES time=GetLocalTime()>
<REQUEST target=NN source=ES dataType="frame">
<DATA>


<METHOD type="AskFactt">
<FRAME name="Distance">
<SLOT name="toObject" type="Number"></SLOT>
</FRAME>
</METHOD >

</DATA>
</REQUEST>
</MODULE>
```

An architecture of "two-hemisphere" expert system (Gavrilov A.V., 1989)

- Level of store of knowledge
- Level of processing of data and knowledge

- Level of store of data
- Level of processing of signals and events

Possible functions of Neural Network

- Preprocessing of signals and data, received from external hardware, classification and clustering,
- Forming linguistic variables from examples,
- Generation of hypothesis based on facts from blackboard,
- Forming of associative links between facts for fast solving of task without inference

Future developments

- Development of collection of neural networks as modules of ESWin
- Introducing into inference the processing of temporal relations and entities "event", "time", "duration" to build of Real Time Expert Systems
- Implementation of inference engine as independent component for including in Real Time Systems
- Testing of proposed architecture on real tasks:
 - System for diagnostic and sorting of genuine leather
 - Control system of mobile robot (program model and real robot)

Opportunity of usage of ESWin in CAMUS

- Development of inference engine compatible with ESWin
- This one will allows to use ESWin for suitable building and debugging of knowledge bases for scenarios

Publications:

- Gavrilov A.V., Novickaja J.V. The Toolkit for development of Hybrid Expert Systems. - 5-th Int. Symp. "KORUS-2001", Tomsk: TPU, 2001. - Proceedings. -Vol.1. - P. 73-75.
- Gavrilov A.V., Novitskaya J.V. The Architecture of the Hybrid Expert System. - / The 6-th Russian-Korean International Symposium on Science and Technology. KORUS-2002, Materials. - Novosibirsk, 2002. - Vol. 3.-P.70.
- Gavrilov A.V. Hybrid Intelligent Systems. Novosibirsk, NSTU, 2003. – 162 p. (in Russian)
- Gavrilov A.V., Chistyakov N.A. An architecture of the toolkit for development of hybrid expert systems. // Proc. Of the Second IASTED Int. Multi-Conference ACIT-2005, Automation, Control and Applications, Novosibirsk, 2005. – Pp. 116-120.

Thanks