

Lecture 1 Introduction to Machine Learnin

Outline

- About this course
- Main terms
- Kinds of learning
- Definition of learning
- Example: checkers
- Example: credit cards
- Example: avoidance of obstacles by robot

Purpose of course

To give for students performance about different paradigms and methods of learning and application of ones in different areas

What do you need to know

- Be able to write programs in C++ or Delphi or Java
- Basics of AI

Course Evaluation

Midterm exam: 1 exam 20%

- Obligatory condition for attendance and passing:
 - Attendance of lectures (no less than 70%)
 - Evidence of successful work under project if project is game then at least concept of project and functional specification
- Final Exam: 1 exam 40%
 - Obligatory condition for attendance and passing:
 - Attendance of lectures (no less than 70%)
 - Presentation on completed project
- Term Project: 1 project 40%
- Total 100%

- ClassThursday, at 9-00, room 309
- Consultations on lectures or projects
 Thursday, at 14-00, room B08

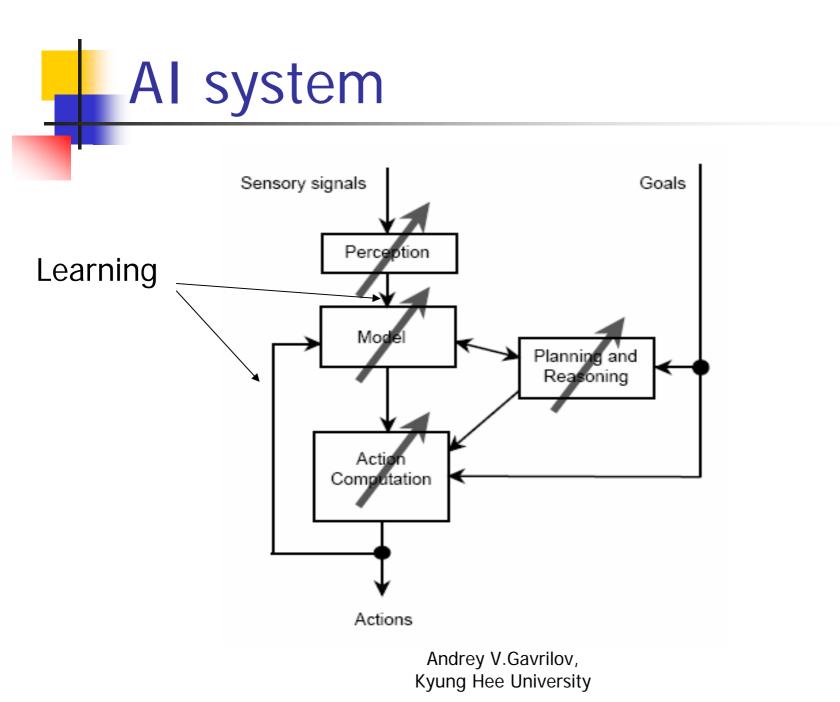
Short questions may be asked by email avg@oslab.khu.ac.kr

Possible Term Projects

- Development of learning agent for symbolic game engine for competition to learn game with unknown rules
- Development of learning agent for recognition of sequence of images
- Development of learning agent for recognition of associations
- Development of learning agent in environment of MRS (simulation of mobile robot)
- Development of learning agent in environment of Webot (simulation of mobile robot)
- Development of learning collaborative agents for soccer
- Development of learning agent for recognition of sequence of words (phrase) in text
- Development of any useful program based on learning technique or in other words
- Apply machine learning techniques to your own problem e.g. classification, clustering, data modeling, object recognition

Learning in nature

- Learning is basics of life
- Creatures learn to recognize of dangers and to predict changed in environment for increasing of chances of survival



Learning & Adaptation

- "Modification of a behavioral tendency by expertise." (Webster 1984)
- "A learning machine, broadly defined is any device whose actions are influenced by past experiences." (Nilsson 1965)
- "Any change in a system that allows it to perform better the second time on repetition of the same task or on another task drawn from the same population." (Simon 1983)
- "An improvement in information processing ability that results from information processing activity." (Tanimoto 1990)

Definition:

A computer program is said to **learn** from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience.

Disciplines relevant to ML

- Artificial intelligence
- Bayesian methods
- Control theory
- Information theory
- Computational complexity theory
- Philosophy
- Psychology and neurobiology
- Cognitive science
- Statistics

Applications of ML

Learning to recognize spoken words

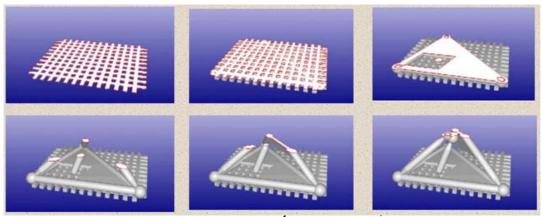
- SPHINX (Lee 1989)
- Learning to drive an autonomous vehicle
 - ALVINN (Pomerleau 1989)
- Learning to classify celestial objects
 - (Fayyad et al 1995)
- Learning to play world-class backgammon
 - TD-GAMMON (Tesauro 1992)
- Designing the morphology and control structure of electro-mechanical artefacts
 - GOLEM (Lipton, Pollock 2000) Andrey V.Gavrilov, Kyung Hee University

Artificial Life

GOLEM Project (Nature: Lipson, Pollack 2000)

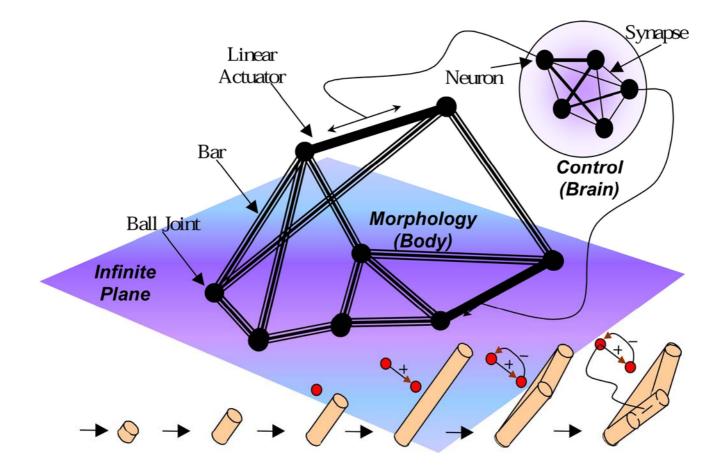
http://golem03.cs-i.brandeis.edu/index.html

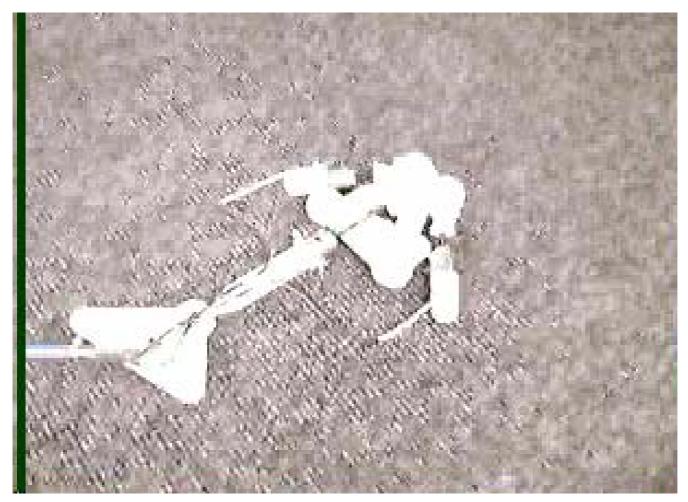
- Evolve simple electromechanical locomotion machines from basic building blocks (bars, actuators, artificial neurons) in a simulation of the physical world (gravity, friction).
- The individuals that demonstrate the best locomotion ability are fabricated through rapid prototyping technology.



Kyung Hee University

Evolvable Robot





Evolved Creatures

Evolved creatures: Sims (1994)

http://genarts.com/karl/evolved-virtual-creatures.html

Darwinian evolution of virtual block creatures for swimming, jumping, following, competing for a block

Kinds of learning

- Individual
 - Supervised samples include inputs and outputs
 - Unsupervised samples include inputs
 - Reinforcement learning based on rewards
- Learning based on evolution of population
 - Genetic algorithms, base on operation with chromosomes Andrey V.Gavrilov, Kyung Hee University 20

Kind of learning (cont.)

- Symbolic
 - Result is casual or logical relations
 - Ex. Decision trees, induction
- Based on Bayesian approach
 - Result is probabilities of events or values
 - Ex. Bayesian nets, Markovian chains
- Based on neural networks
 - Result is associations between patterns or vectors of features
 - Ex. MLP, Hopfield nets, ART, SOM, Recurrent Nets

Learning Problem

Learning: improving with experience at some task

- Improve over task T
- With respect to performance measure P
- Based on experience E

Example: Learn to play checkers:

- T: play checkers
- P: percentage of games won in a tournament
- E: opportunity to play against itself

Learning to play checkers

- T: play checkers
- P: percentage of games won
- What experience?
- What exactly should be learned?
- How shall it be represented?
- What specific algorithm to learn it?

Type of Training Experience

Direct or indirect?

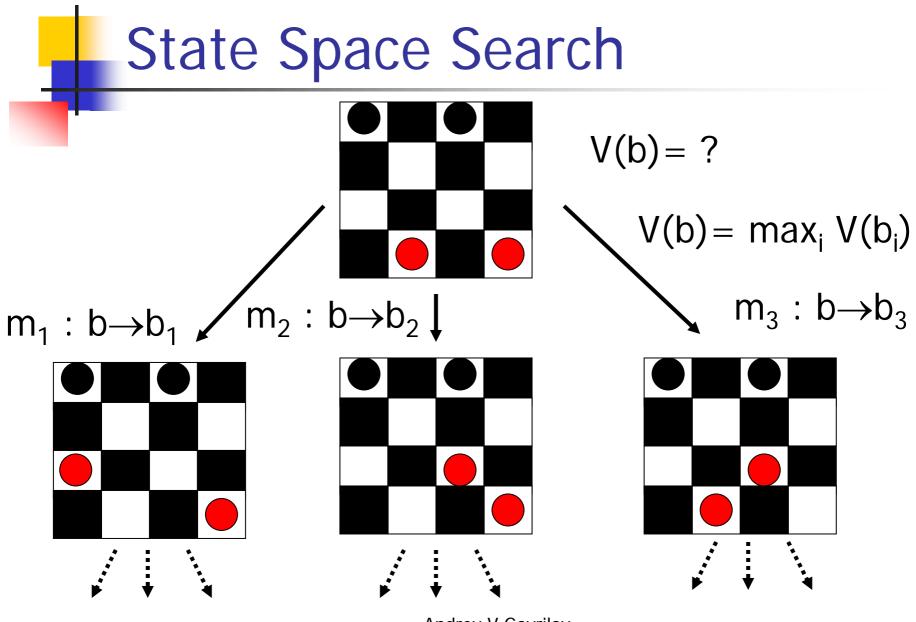
- Direct: board state -> correct move
- Indirect: outcome of a complete game
- Credit assignment problem
- Teacher or not ?
 - Teacher selects board states
 - Learner can select board states
- Is training experience representative of performance goal?
 - Training playing against itself
 - Performance evaluated playing against world champion

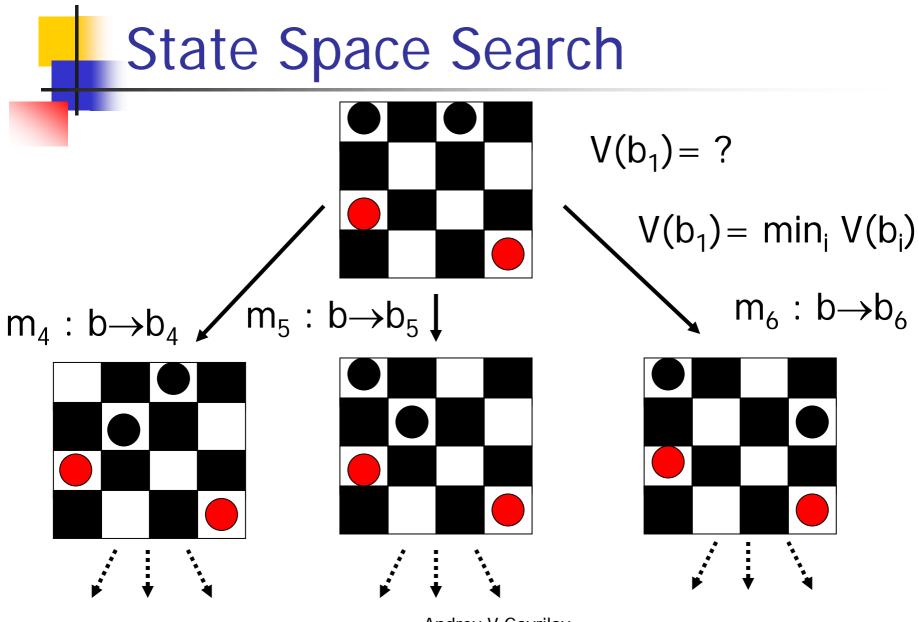
Choose Target Function

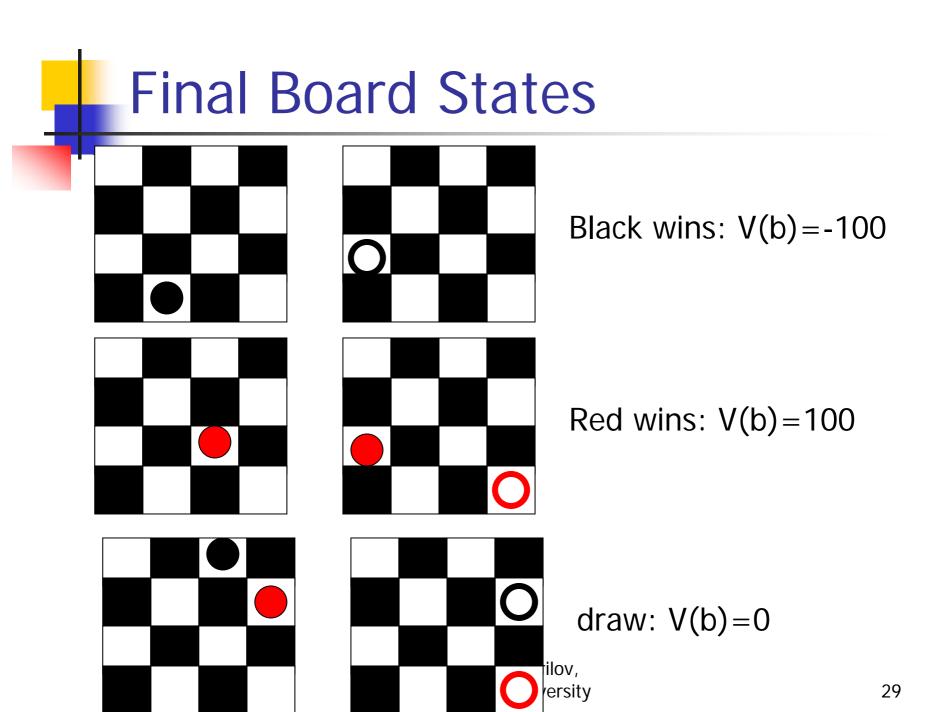
- ChooseMove : $B \rightarrow M$: board state \rightarrow move
 - Maps a legal board state to a legal move
- Evaluate : $B \rightarrow V$: board state \rightarrow board value
 - Assigns a numerical score to any given board state, such that better board states obtain a higher score
 - Select the best move by evaluating all successor states of legal moves and pick the one with the maximal score

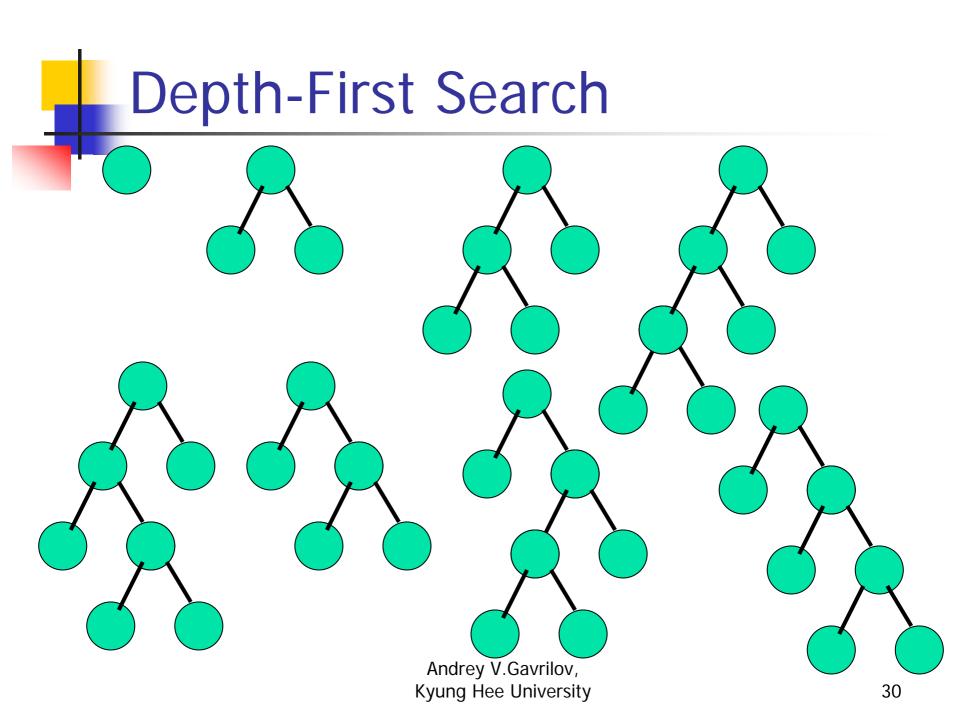
Possible Definition of Target Function

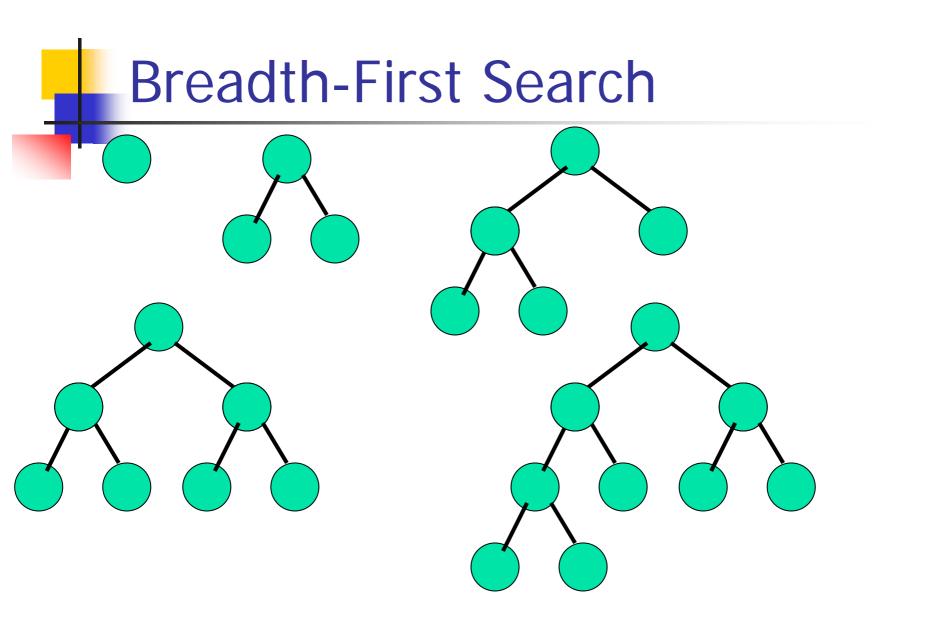
- If b is a final board state that is won then
 V(b) = 100
- If b is a final board state that is lost then
 V(b) = -100
- If b is a final board state that is drawn then V(b)=0
- If b is not a final board state, then V(b)=V(b'), where b' is the best final board state that can be achieved starting from b and playing optimally until the end of the game.
- Gives correct values but is not operational Kyung Hee University











Number of Board States

Tic-Tac-Toe:

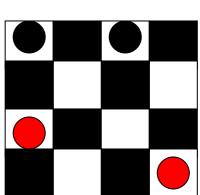
#board states < 9!/(5! 4!) + 9!/(1! 4! 4!) + + 9!/(2! 4! 3!) + ... 9 = 6045

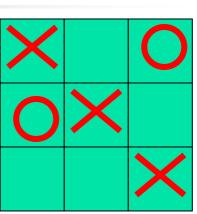
4 x 4 checkers: (no queens) #board states = ?

#board states < $8x7x6x5^{2}/(2!^{2}!) = 1680$

Regular checkers (8x8 board, 8 pieces each)

#board states < $32!*2^{16}/(8!*8!*16!) = 5.07*10^{17}$ Kyung Hee University





Choose Representation of Target Function

- Table look-up
- Collection of rules
- Neural networks
- Polynomial function of board features
- Trade-off in choosing an expressive representation:
 - Approximation accuracy
 - Number of training examples to learn the target function

Representation of Target Function

- $V(b) = \omega_0 + \omega_1 bp(b) + \omega_2 rp(b) + \omega_2$
 - $\omega_3 bk(b) + \omega_4 rk(b) + \omega_5 bt(b) + \omega_6 rt(b)$
- bp(b): #black pieces
- rb(b): #red pieces
- bk(b): #black kings
- rk(b): #red kings
- bt(b): #red pieces threatened by black
- rt(b): #black pieces threatened by red

Obtaining Training Examples

- V(b) : true target function
- V'(b) : learned target function
- V_{train}(b) : training value
- Rule for estimating training values:

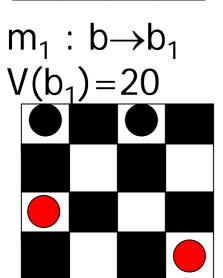
• $V_{train}(b) \leftarrow V'(Successor(b))$

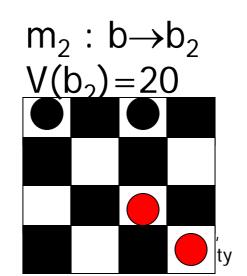
Choose Weight Training Rule

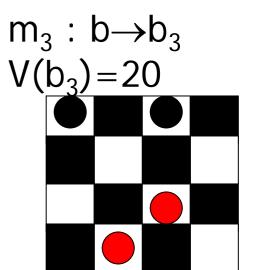
LMS weight update rule:

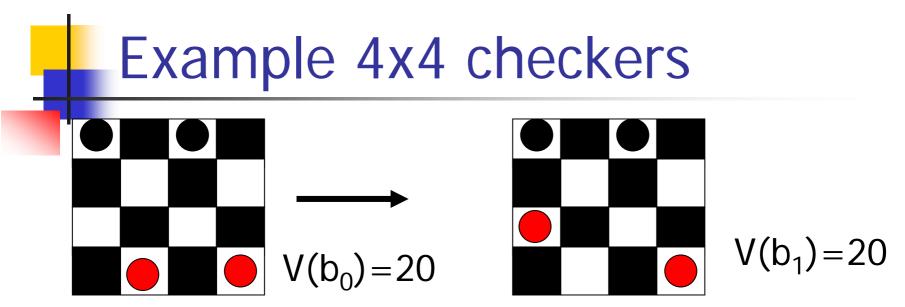
- Select a training example b at random
- 1. Compute error(b) error(b) = $V_{train}(b) - V'(b)$
- 2. For each board feature fi, update weight $\omega_i \leftarrow \omega_i + \eta f_i \text{ error(b)}$
- η : learning rate approx. 0.1

Example: 4x4 checkers $V(b) = \omega_0 + \omega_1 rp(b) + \omega_2 bp(b)$ Initial weights: $\omega_0 = -10$, $\omega_1 = 75$, $\omega_2 = -60$ $V(b_0) = \omega_0 + \omega_1^{*}2 + \omega_2^{*}2 = 20$





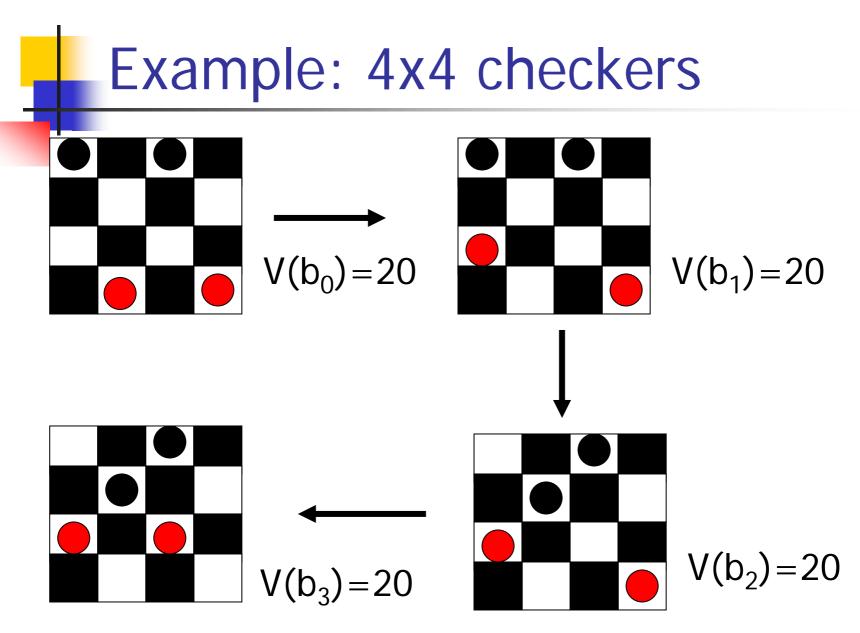


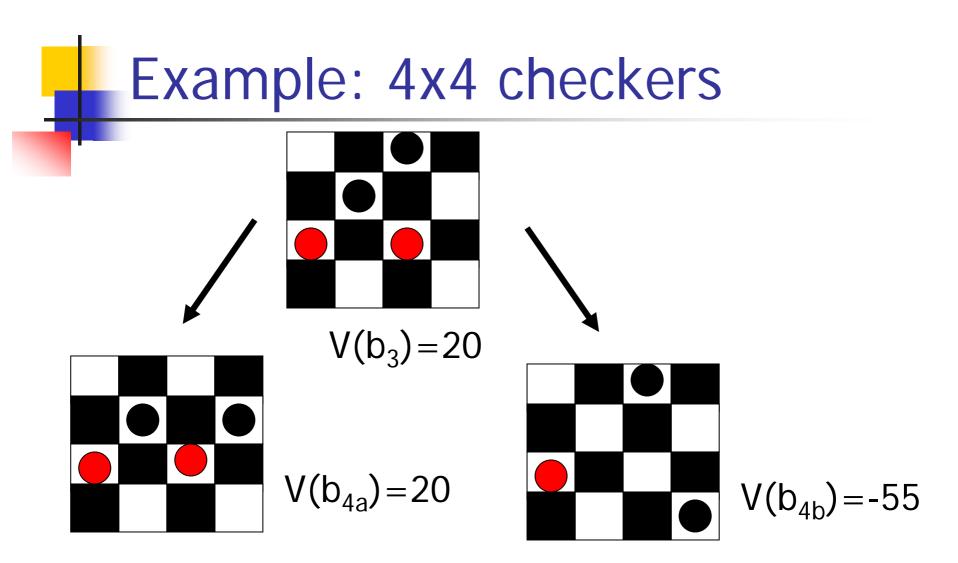


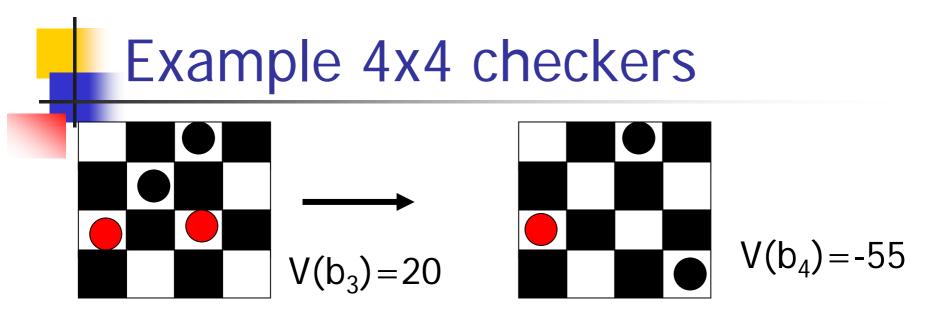
1. Compute error(b_0) = $V_{train}(b) - V(b_0) = V(b_1) - V(b_0) = 0$

2. For each board feature fi, update weight

 $\omega_{i} \leftarrow \omega_{i} + \eta f_{i} \operatorname{error}(b)$ $\omega_{0} \leftarrow \omega_{0} + 0.1 * 1 * 0$ $\omega_{1} \leftarrow \omega_{1} + 0.1 * 2 * 0$ $\omega_{2} \leftarrow \omega_{2} + 0.1 * 2 * 0$





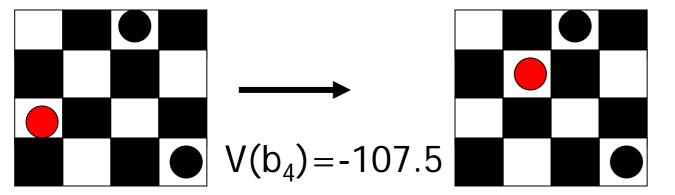


- 1. Compute error(b_3) = $V_{train}(b) V(b_3) = V(b_4) V(b_3) = -75$
- 2. For each board feature fi, update weight

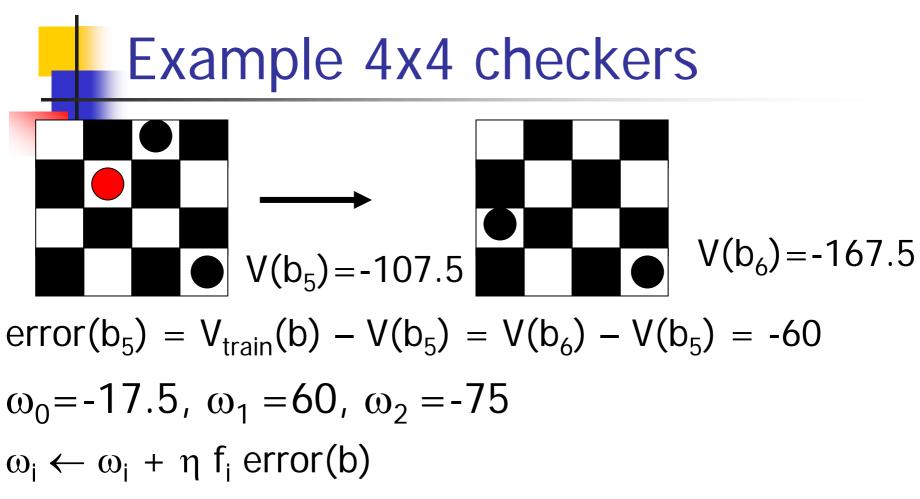
$$\begin{split} &\omega_{i} \leftarrow \omega_{i} + \eta \ f_{i} \ \text{error}(b) : \omega_{0} = -10, \ \omega_{1} = 75, \ \omega_{2} = -60 \\ &\omega_{0} \leftarrow \omega_{0} - 0.1 \ * \ 1 \ * \ 75, \ \omega_{0} = -17.5 \\ &\omega_{1} \leftarrow \omega_{1} - 0.1 \ * \ 2 \ * \ 75, \ \omega_{1} = 60 \\ &\omega_{2} \leftarrow \omega_{2} - 0.1 \ * \ 2 \ * \ 75, \ \omega_{2drey} \ \sqrt{-75}_{Gavillov,} \\ & \text{Kyung Hee University} \end{split}$$

Example: 4x4 checkers

$$\omega_0 = -17.5$$
 , $\omega_1 = 60$, $\omega_2 = -75$



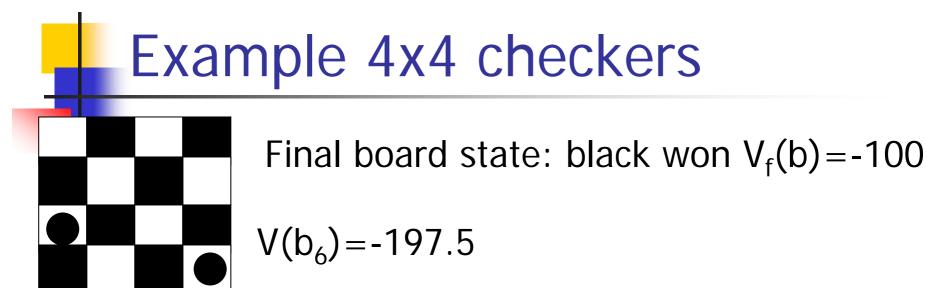
$V(b_5) = -107.5$



$$\omega_0 \leftarrow \omega_0$$
 - 0.1 * 1 * 60, ω_0 = -23.5

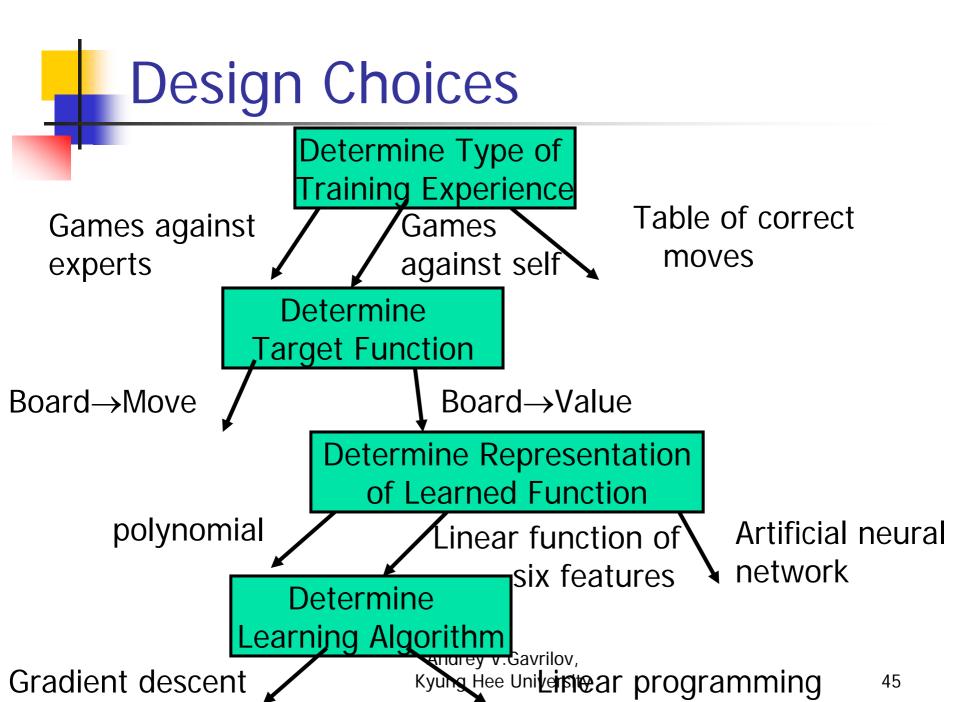
 $\omega_1 \leftarrow \omega_1 - 0.1 * 1 * 60, \omega_1 = 54$

$$\omega_2 \leftarrow \omega_2 - 0.1 * 2 * 60$$
, which we university V- ω_2 and ω_2



 $error(b_6) = V_{train}(b) - V(b_6) = V_f(b_6) - V(b_6) = 97.5$ $\omega_0 = -23.5, \ \omega_1 = 54, \ \omega_2 = -87$ $\omega_i \leftarrow \omega_i + \eta f_i \operatorname{error}(b)$ $\omega_0 \leftarrow \omega_0 + 0.1 * 1 * 97.5, \omega_0 = -13.75$ $\omega_1 \leftarrow \omega_1 + 0.1 * 0 * 97.5, \omega_1 = 54$ $\omega_2 \leftarrow \omega_2 + 0.1 * 2 * 97.5$

44



Learning Problem Examples

Credit card applications

- Task T: Distinguish "good" applicants from "risky" applicants.
- Performance measure P : ?
- Experience E : ? (direct/indirect)
- Target function : ?

Performance Measure P:

- Error based: minimize percentage of incorrectly classified customers : P = N_{fp} + N_{fn} / N
 N_{fp}: # false positives (rejected good customers)
 N_{fn}: # false negatives (accepted bad customers)
- Utility based: maximize expected profit of credit card business: P = N_{cp} *U_{cp} + N_{fn} *U_{fn}
 U_{cp} : expected utility of an accepted good customer
 U_{fn} : expected utility/loss of an accepted bad customer

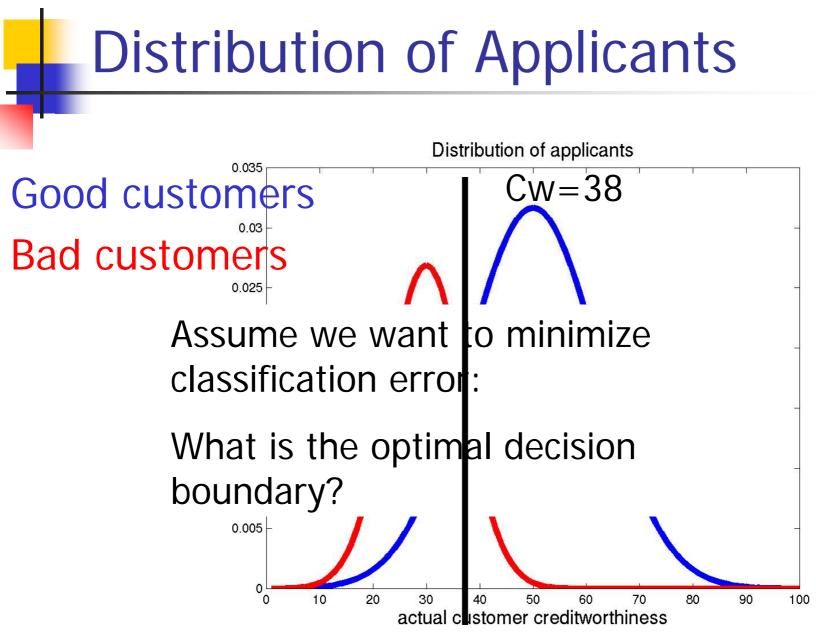
Experience E:

Direct: Decisions on credit card applications made by a human financial expert Training data: <customer inf., reject/accept>

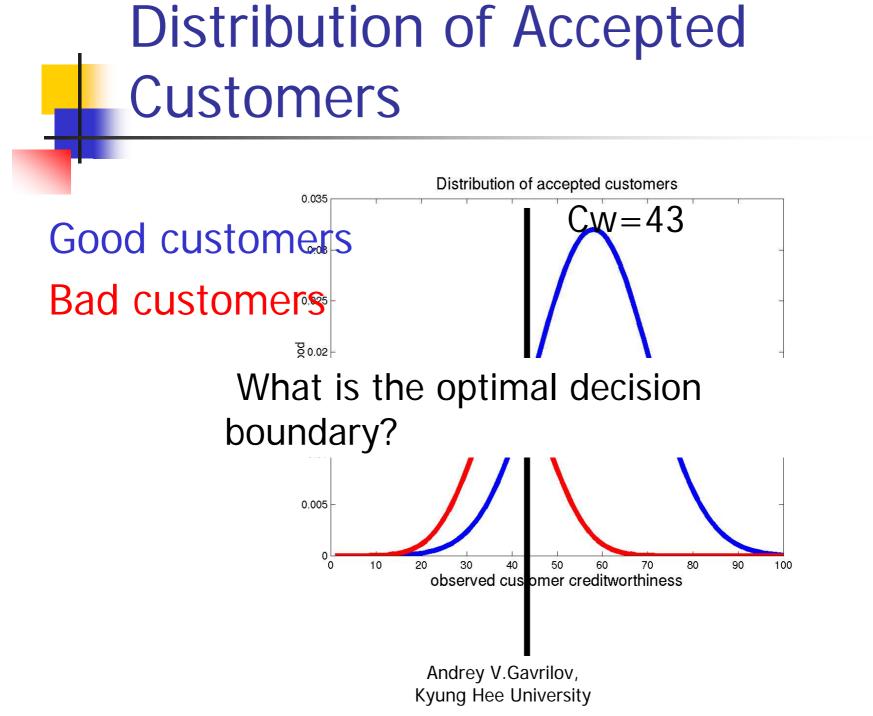
 Direct: Actual customer behavior based on previously accepted customers

Training data: <customer inf., good/bad> Problem: Distribution of applicants P_{applicant} is not identical with training data P_{train}

 Indirect: Evaluate a decision policy based on the profit you made over the past N years.



Kyung Hee University



Customer record:

income, owns house, credit history, age, employed, accept \$40000, yes, good, 38, full-time, yes \$25000, no, excellent, 25, part-time, no \$50000, no, poor, 55, unemployed, no

- T: Customer data \rightarrow accept/reject
- T: Customer data \rightarrow probability good customer
- T: Customer data \rightarrow expected utility/profit

Learning methods

Decision rules:

- If income < \$30.000 then reject</p>
- Bayesian network:
 - P(good | income, credit history,....)
- Neural Network:
- Nearest Neighbor:
 - Take the same decision as for the customer in the data base that is most similar to the applicant

Learning Problem Examples

- Obstacle Avoidance Behavior of a Mobile Robot
 - Task T: Navigate robot safely through an environment.
 - Performance measure P : ?
 - Experience E : ?
 - Target function : ?

Performance Measure P:

- P: Maximize time until collision with obstacle
- P: Maximize distance travelled until collision with obstacle
- P: Minimize rotational velocity, maximize translational velocity
- P: Minimize error between control action of a human operator and robot controller in the same situation

Training Experience E:

Direct: Monitor human operator and use her control actions as training data:

• $E = \{ < perception_i, action_i > \}$

- Indirect: Operate robot in the real world or in a simulation. Reward desirable states, penalize undesirable states
 - V(b) = +1 if v > 0.5 m/s
 - V(b) = +2 if ω < 10 deg/s
 - V(b) = -100 if bumper state = 1

Question: Internal or external reward ? Kyung Hee University

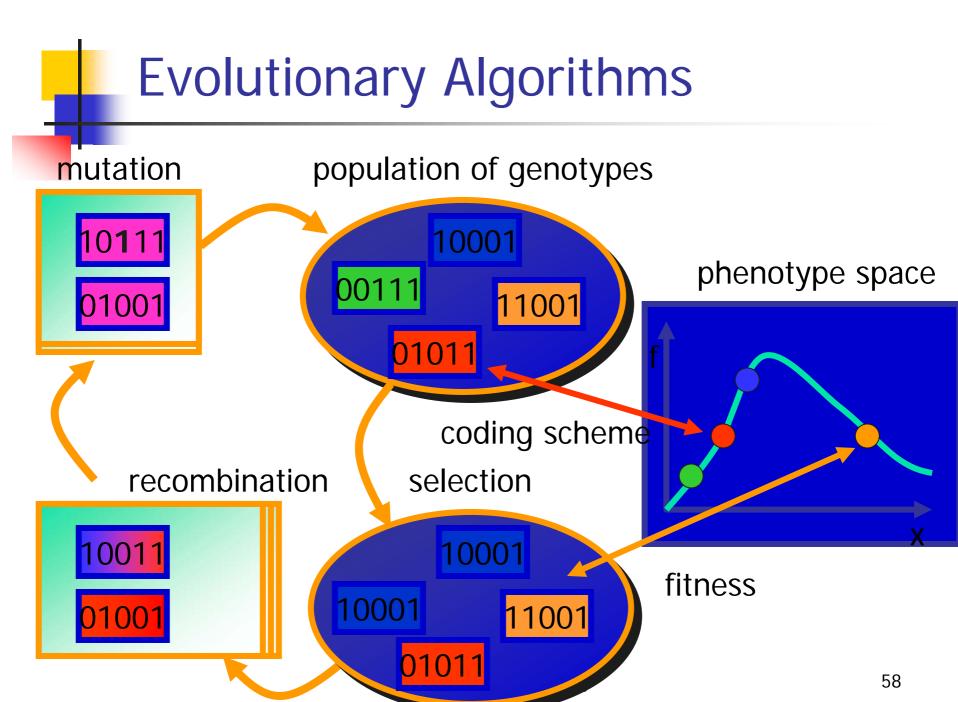
Target Function

- Choose action:
 - A: perception \rightarrow action
 - Sonar readings: $s1(t)...sn(t) \rightarrow \langle v, \omega \rangle$
- Evaluate perception/state:
 - V: $s1(t)...sn(t) \rightarrow V(s1(t)...sn(t))$
 - Problem: states are only partially observable therefore world seems non-deterministic
 - Markov Decision Process : successor state s(t+1) is a probabilistic function of current state s(t) and action a(t)
- Evaluate state/action pairs:
 - V: s1(t)...sn(t), $a(t) \rightarrow V(s1(t)...sn(t), a(t))$

Learning Methods

Neural Networks

- Require direct training experience
- Reinforcement Learning
 - Indirect training experience
- Evolutionary Algorithms
 - Indirect training experience



Evolution of Simple Navigation

Issues in Machine Learning

- What algorithms can approximate functions well and when?
- How does the number of training examples influence accuracy?
- How does the complexity of hypothesis representation impact it?
- How does noisy data influence accuracy?
- What are the theoretical limits of learnability?

Machine vs. Robot Learning

Machine Learning

- Learning in vacuum
- Statistically well-behaved data
- Mostly off-line
- Informative feed-back
- Computational time not an issue
- Hardware does not matter
- Convergence proof

Robot Learning

- Embedded learning
- Data distribution not homogeneous
- Mostly on-line
- Qualitative and sparse feed-back
- Time is crucial
- Hardware is a priority
- Empirical proof

Learning in Robotics

behavioral adaptation:

- adjust the parameters of individual behaviors according to some direct feedback signal (e.g. adaptive control)
- evolutionary adaptation: application of artificial evolution to robotic systems
- sensor adaptation:
 - adopt the perceptual system to the environment (e.g. classification of different contexts, recognition)
- learning complex, deliberative behaviors: unsupervised learning based on sparse feedback from the environment, credit assignment problem (e.g. reinforcement learning)