
Lecture 10
Evolution Programming and Genetic

Algorithms

Machine Learning

A.V.Gavrilov
Kyung Hee University

2

Any associations …

A.V.Gavrilov
Kyung Hee University

3

A.V.Gavrilov
Kyung Hee University

4

Evolution based on:

• Reproduction with cross-over. Inheritance and
mixture of features provide the keeping of useful
features (stability) and variability (plasticity).
Offspring always distinct from parents

• Selection of most perspective individuals in
population for producing of next generation.
Selection (in AL) is controlled by value of fitness-
function. It simulates natural selection (controlled by
deaths).

• Mutation provides more strong variations than cross-
over

A.V.Gavrilov
Kyung Hee University

5

A.V.Gavrilov
Kyung Hee University

6

A.V.Gavrilov
Kyung Hee University

7

A.V.Gavrilov
Kyung Hee University

8

Self-Reproduction in Computers

• An old mathematical problem, to write a
program that can reproduce (e.g., print out a
copy of itself) leads to infinite regress.

A.V.Gavrilov
Kyung Hee University

9

Solution to Infinite Regress

• Solution in the von Neumann computer
architecture. He also described a “self-
reproducing automaton”

• Basic idea
– Computer program stored in computer memory
– A program has access to the memory where it is stored
– Let’s say we have an instruction MEM that is the

location in memory of the instruction currently being
executed

A.V.Gavrilov
Kyung Hee University

10

A Working Self-Reproducing
Program

1 Program copy
2 L = MEM +1
3 print(“Program copy”)
4 print(“L = MEM + 1”)
5 LOOP until line[L] = “end”
6 print(line[L])
7 L=L+1
8 print(“end”)
9 end

A.V.Gavrilov
Kyung Hee University

11

Self-Reproducing Program

• Information used two ways
– As instructions to execute
– As data for the instructions

• Could make an analogy with DNA
– DNA strings of nucleotides
– DNA encodes the enzymes that effect copying:

splitting the double helix, copying each strand
with RNA, etc.

A.V.Gavrilov
Kyung Hee University

12

Evolution in Computers

• Genetic Algorithms – most widely known
work by John Holland

• Based on Darwinian Evolution
– In a competitive environment, strongest, “most

fit” of a species survive, weak die
– Survivors pass their good genes on to offspring
– Occasional mutation

A.V.Gavrilov
Kyung Hee University

13

Evolution in Computers

• Same idea in computers
– Population of computer program / solution

treated like the critters above, typically encoded
as a bit string

– Survival Instinct – have computer programs
compete with one another in some
environment, evolve with mutation and sexual
recombination

A.V.Gavrilov
Kyung Hee University

14

GA’s for Computer Problems

Population of critters Population of computer solutions
Surviving in environment Solving computer problem
Fitness measure in nature Fitness measure solving computer

problem
Fit individuals life, poor die Play God and kill computer solutions

that do poorly, keep those that do well.
i.e. “breed” the best solutions typically
Fitness Proportionate Reduction

Pass genes along via mating Pass genes along through
computer mating

Repeat process, getting more and more fit individuals
in each generation.
Usually represent computer solutions as bit strings.

A.V.Gavrilov
Kyung Hee University

15

“Digital life of programs”
• Cellular Automata: Artificial chemistry or physics substrate to support

living systems.
• Alternative: Use the “chemistry” of the von Neumann computer as a

substrate for lifelike behavior:
– Core Wars
– Tierra
– Avida

• Analogy:
– Organic life uses energy (from the sun) to organize matter.
– Digital life uses CPU time to organize memory.

• Organic life evolves through natural selection as individuals compete
for resources (light, food, space).

• Digital life evolves through the same process, as replicating algorithms
compete for CPU time and memory space.

A.V.Gavrilov
Kyung Hee University

16

The Digital Environment

• Abiotic Environment
– Memory
– CPU
– Operating system

• Creatures
– Self-replicating assembly-language programs
– Analogy to RNA world (same structure carries genetic

information and performs metabolic activity)
– Machine instructions <-> Amino acids (chemically

active)

A.V.Gavrilov
Kyung Hee University

17

Tierra (1)
• Virtual computer:

– MIMD (time-sharing model)
– One processor for each creature.

• Each processor (CPU):
– 2 address registers
– 2 numeric registers
– flags (for errors)
– stack pointer
– 10-word stack
– instruction pointer

• Each CPU performs a perpetual cycle:
– Fetch-Decode-Execute-Increment IP
– Fetch the instruction addressed by IP
– Decode it
– Execute the instruction
– Increment the IP to next sequential location in RAM (except in case of JMP,

CALL, or RET)

A.V.Gavrilov
Kyung Hee University

18

Tierra (2)
• 1 RAM for all CPUs (the soup):

– Memory protection within allocated block of memory (write protection, not read
protection).

• Instruction set:
– 32 instructions including operands
– Pattern-based addressing
– E,g,

• JMP NOP0 NOP0 NOP0 NOP1
• System will look outwards in both directions from JMP instruction to the

nearest occurrence of a complementary pattern (NOP1 NOP1 NOP1 NOP0)
• If Found, IP jumps to end of pattern and resumes execution.

– Everything else standard (MOV,CALL, RET, POP, PUSH)
– Copy and fork built in.
– DIVIDE instruction: Creates a new IP (cell division)

• Reaper (death)
– Removes creatures that have errors
– Removes creatures that have lived the longest

• Slicer:
– Allocates time slices

A.V.Gavrilov
Kyung Hee University

19

Tierra (3)
• Mutation:

– Instructions sometimes off by +/- 1.
• Ancestor:

– Hand-craft a single minimal self replicating program.
– 80 instructions long.
– Locate beginning and ending address.
– Subtract to determine size.
– Allocate block of memory for daughter.
– Copy genome to new memory 1 cell at a time.
– Execute DIVIDE to create a new IP (cell division).

A.V.Gavrilov
Kyung Hee University

20

Tierra. Results
• Ancestor replicated to fill RAM.
• Diversified through mutation.
• Length shrank from 80 instructions to 45

– Parasites hijacked other programs’ copying routines.
• Parasites bommed, then crashed.
• Hosts evolved immunity to the parasites.

– Analogy: E. coli develop immunity to bacteriophage.
• Arms Race:

– Hosts
– Parasites
– Immune hosts
– Parasites overcome immune hosts
– Symbionts
– Cheaters
– Super-parasites

A.V.Gavrilov
Kyung Hee University

21

The Simple Genetic Algorithm
1. Generate an initial random population of M

individuals (i.e. programs)
2. Repeat for N generations

1. Calculate a numeric fitness for each individual
2. Repeat until there are M individuals in the new

population
1. Choose two parents from the current population

probabilistically based on fitness (i.e. those with a higher
fitness are more likely to be selected)

2. Cross them over at random points, i.e. generate children based
on parents (note external copy routine)

3. Mutate with some small probability
4. Put offspring into the new population

A.V.Gavrilov
Kyung Hee University

22

Genetic
algorithm

A.V.Gavrilov
Kyung Hee University

23

An Abstract Example

Distribution of Individuals in Generation 0

Distribution of Individuals in Generation N

Fitness function

A.V.Gavrilov
Kyung Hee University

24

A.V.Gavrilov
Kyung Hee University

25

Crossover
Typically use bit strings, but could use other structures

Bit Strings: Genotype representing some phenotype

Individual 1: 001010001 Individual 2: 100110110

New child : 100110001 has characteristics of

both parents, hopefully

better than before

Bit string can represent whatever we want for our particular
problem; solution to a complex equation, logic problem,
classification of some data, aesthetic art, music, etc.

A.V.Gavrilov
Kyung Hee University

26

Simple example: Find MAX of a function

To keep it simple, use y=x so bigger X is better

A.V.Gavrilov
Kyung Hee University

27

Chromosome Representation
Let's make our individuals just be numbers along the X axis,
represented as bit strings, and initialize them randomly:

Individual 1 : 000000000
Individual 2 : 001010001
Individual 3 : 100111111
….
Individual N : 110101101

Fitness function: Y value of each solution. This is the fitness
function. Note that even for NP complete problems, we can often
compute a fitness (remember that solutions for NP Complete
problems can be verified in Polynomial time).
Say for some parents we pick: 100111111 and 110101101

A.V.Gavrilov
Kyung Hee University

28

Crossover
Crossover: Randomly select crossover point, and swap code

100111111 and 110101101
Individual 1: 100111111 Individual 2: 110101101

New child : 110101111 has characteristics of
both parents, hopefully
better than before

Or could have done:

Individual 1: 100111111 Individual 2: 110101101

New child: 100111101 ; not better in this case

A.V.Gavrilov
Kyung Hee University

29

Mutation
Mutation: Just randomly flip some bits ; low probability of doing this

Individual: 011100101
New: 111100101

Mutation keeps the gene pool active and helps prevent stagnation.

A.V.Gavrilov
Kyung Hee University

30

– NP-Complete
– NP-Complete problems are good candidates for

applying GA’s
• Problem space too large to solve exhaustively
• Multiple “agents” (each individual in the

population) provides a good way to probe the
landscape of the problem space

• Generally not guaranteed to solve the problem
optimally

Second Example : TSP

A.V.Gavrilov
Kyung Hee University

31

• Formal definition for the TSP
– Start with a graph G, composed of edges E and

vertices V, e.g. the following has 5 nodes, 7 edges,
and costs associated with each edge:

– Find a loop (tour) that visits each node exactly once
and whose total cost (sum of the edges) is the
minimum possible

3
15

6

17

3

5

A.V.Gavrilov
Kyung Hee University

32

• Easy on the graph shown on the previous slide; becomes
harder as the number of nodes and edges increases

• Adding two new edges results in five new paths to
examine

• For a fully connected graph with n nodes, n! loops
possible
– Impractical to search them all for more than about 25 nodes

• Excluding degenerate graphs, an exponential number of
loops possible in terms of the number of nodes/edges

3
15

6

17

3

5

4

3

A.V.Gavrilov
Kyung Hee University

33

• Guaranteed optimal solution to TSP
– Evaluate all loops

• Approximation Algorithms
– May achieve optimal solution but not guaranteed
– Nearest Neighbor
– Find minimum cost of edges to connect each node

then turn into a loop
– Heuristic approaches, simulated annealing
– Genetic Algorithm

A.V.Gavrilov
Kyung Hee University

34

• A genetic algorithm approach
– Randomly generate a population of agents

• Each agent represents an entire solution, i.e. a random ordering of each
node representing a loop

– Given nodes 1-6, we might generate 423651 to represent the loop of
visiting 4 first, then 2, then 3, then 6, then 5, then 1, then back to 4

– In a fully connected graph we can select any ordering, but in a partially
connected graph we must ensure only valid loops are generated

– Assign each agent a fitness value
• Fitness is just the sum of the edges in the loop; lower is more fit

– Evolve a new, hopefully better, generation of the same number
of agents

• Select two parents randomly, but higher probability of selection if
better fitness

• New generation formed by crossover and mutation

A.V.Gavrilov
Kyung Hee University

35

• Crossover
– Must combine parents in a way that preserves valid

loops
– Typical cross method, but invalid for this problem

Parent 1 = 423651 Parent 2 = 156234
Child 1 = 423234 Child 2 = 156651

– Use a form of order-preserving crossover:
Parent 1 = 423651 Parent 2 = 156234
Child 1 = 123654

• Copy positions over directly from one parent, fill in from
left to right from other parent if not already in the child

• Mutation
– Randomly swap nodes (may or may not be

neighbors)

A.V.Gavrilov
Kyung Hee University

36

Why does this work?
• How does a GA differ from random search?

– Pick best individuals and save their “good” properties, not random ones
• What information is contained in the strings and their fitness

values, that allows us to direct the search towards improved
solutions?
– Similarities among the strings with high fitness value suggest a relationship

between those similarities and good solutions.
• A schema is a similarity template describing a subset of strings with

similarities at certain string positions.
• Crossover leaves a schema unaffected if it doesn't cut the schema.
• Mutation leaves a schema unaffected with high probability (since mutation has

a low probability).
• Highly-fit, short schema (called building blocks) are propagated from

generation to generation with high probability.
– Competing schemata are replicated exponentially according to their fitness

value.
– Good schemata rapidly dominate bad ones.

A.V.Gavrilov
Kyung Hee University

37

TSP Example: 30 Cities
(J.Abonyi, J.Madar)

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

x

y

A.V.Gavrilov
Kyung Hee University

38

Solution (Distance=941)

TSP30 (Performance = 941)

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

x

y

A.V.Gavrilov
Kyung Hee University

39

Solution (Distance=800)
44
62
69
67
78
64
62
54
42
50
40
40
38
21
35
67
60
60
40
42
50
99

TSP30 (Performance = 800)

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

x

y

A.V.Gavrilov
Kyung Hee University

40

Solution (Distance=652)

TSP30 (Performance = 652)

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

x

y

A.V.Gavrilov
Kyung Hee University

41

Best solution (Distance=420)
42
38
35
26
21
35
32
7

38
46
44
58
60
69
76
78
71
69
67
62
84
94

TSP30 Solution (Performance = 420)

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

x

y

A.V.Gavrilov
Kyung Hee University

42

Overview of performance
TSP30 - Overview of Performance

0

200

400

600

800

1000

1200

1400

1600

1800

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Generations (1000)

D
is

ta
nc

e

Best

Worst

Average

A.V.Gavrilov
Kyung Hee University

43

Advantages of GA’s
Easy to understand and implement
Easy to adapt to many problems
Work surprisingly well
Modular, separate from application
Supports multi-objective optimization
Good for “noisy” environments
Inherently parallel; easily distributed
Many variations are possible

(elitism, niche populations, hybrid w/other techniques)
Less likely to get stuck in a local minima due to randomness

A.V.Gavrilov
Kyung Hee University

44

Problems of GA’s
• Need diverse genetic pool, or we can get inbreeding :

stagnant population base

• No guarantee that children will be better than parents
could be worse, could lose a super individual

elitism- when we save the best individual
• Very slow methods for optimization
• Sometimes definition of task and programming are difficult.
Effectiveness of usage of GA depend on definition of task
(e.g. structure of chromosome and semantics of genes)

