
Machine Learning

Lecture 12
Instance Based Learning.

Radial basis functions

Outline

K-Nearest Neighbor
Locally weighted regression
Radial basis functions

When to Consider Nearest
Neighbors

Instances map to points in RN

Less than 20 attributes per instance
Lots of training data

Advantages:
Training is very fast
Learn complex target functions
Do not loose information

Disadvantages:
Slow at query time
Easily fooled by irrelevant attributes

Instance Based Learning

Key idea: just store all training examples <xi,f(xi)>
Nearest neighbor:

Given query instance xq, first locate nearest
training example xn, then estimate f(xq)=f(xn)

K-nearest neighbor:
Given xq, take vote among its k nearest neighbors
(if discrete-valued target function)
Take mean of f values of k nearest neighbors (if
real-valued) f(xq)=Σi=1

k f(xi)/k

Voronoi Diagram

query point qf

nearest neighbor qi

3-Nearest Neighbors

query point qf

3 nearest neighbors

2x,1o

7-Nearest Neighbors

query point qf

7 nearest neighbors

3x,4o

Nearest Neighbor (continuous)
1-nearest neighbor

Nearest Neighbor (continuous)
3-nearest neighbor

Nearest Neighbor (continuous)
5-nearest neighbor

Locally Weighted Regression

Regression means approximating a real-
valued target function
Residual is the error
in approximating the target function
Kernel function is the function of distance
that is used to determine the weight of each
training example. In other words, the kernel
function is the function K such that
wi=K(d(xi,xq))

ˆ () ()f x f x−

Distance Weighted k-NN

Give more weight to neighbors closer to the
query point

f^(xq) = Σi=1
k wi f(xi) / Σi=1

k wi

where wi=K(d(xq,xi))
and d(xq,xi) is the distance between xq and xi

Instead of only k-nearest neighbors use all
training examples (Shepard’s method)

Distance Weighted Average

Weighting the data:

f^(xq) = Σi f(xi) K(d(xi,xq))/ Σi K(d(xi,xq))
Relevance of a data point (xi,f(xi)) is measured

by calculating the distance d(xi,xq) between
the query xq and the input vector xi

Weighting the error criterion:

E(xq) = Σi (f^(xq)-f(xi))2 K(d(xi,xq))
the best estimate f^(xq) will minimize the cost
E(q), therefore ∂E(q)/∂f^(xq)=0

Kernel Functions

Distance Weighted NN
K(d(xq,xi)) = 1/ d(xq,xi)2

Distance Weighted NN
K(d(xq,xi)) = 1/(d0+d(xq,xi))2

Distance Weighted NN
K(d(xq,xi)) = exp(-(d(xq,xi)/σ0)2)

Curse of Dimensionality

Imagine instances described by 20 attributes but only
are relevant to target function

Curse of dimensionality: nearest neighbor is easily
misled when instance space is high-dimensional

One approach:
Stretch j-th axis by weight zj, where z1,…,zn chosen
to minimize prediction error
Use cross-validation to automatically choose weights
z1,…,zn

Note setting zj to zero eliminates this dimension
alltogether (feature subset selection)

Linear Global Models
The model is linear in the parameters wk, which
can be estimated using a least squares algorithm

f^(xi) = Σk=1
D βk xki or F(x) = X β

Where xi=(x1,…,xD)i, i=1..N, with D the input dimension
and N the number of data points.

Estimate the wk by minimizing the error criterion

E= Σi=1
N (f^(xi) – yi)2

(XTX) β = XT F(X)
β = (XT X)-1 XT F(X)

βk= Σm=1
D Σn=1

N (Σl=1
D xT

kl xlm)-1 xT
mn f(xn)

Linear Regression Example

Linear Local Models
Estimate the parameters βk such that they locally
(near the query point xq) match the training data
either by
weighting the data:
wi=K(d(xi,xq))1/2 and transforming
zi=wi xi

vi=wi yi

or by weighting the error criterion:

E= Σi=1
N (xi

T β – yi)2 K(d(xi,xq))
still linear in β with LSQ solution
β = ((WX)T WX)-1 (WX)T WF(X)

Linear Local Model Example

query point
Xq=0.35

Kernel K(x,xq)

Local linear
model:
f^(x)=b1x+b0

f^(xq)=0.266

Linear Local Model Example

Design Issues in Local
Regression

Local model order (constant, linear, quadratic)
Distance function d

feature scaling: d(x,q)=(Σj=1
d mj(xj-qj)2)1/2

irrelevant dimensions mj=0
kernel function K
smoothing parameter bandwidth h in K(d(x,q)/h)

h=|m| global bandwidth
h= distance to k-th nearest neighbor point
h=h(q) depending on query point
h=hi depending on stored data points

See paper by Atkeson [1996] ”Locally Weighted Learning”

Radial Basis Function Network

Global approximation to target function in
terms of linear combination of local
approximations
Used, e.g. for image classification
Similar to back-propagation neural network
but activation function is Gaussian rather
than sigmoid
Closely related to distance-weighted
regression but ”eager” instead of ”lazy”

Radial Basis Function Network

input layer

Kernel functions

output f(x)

xi

Kn(d(xn,x))=
exp(-1/2 d(xn,x)2/σ2)

wn linear parameters

f(x)=w0+Σn=1
k wn Kn(d(xn,x))

Training Radial Basis Function
Networks

How to choose the center xn for each Kernel
function Kn?

scatter uniformly across instance space
use distribution of training instances (clustering)

How to train the weights?
Choose mean xn and variance σn for each Kn

nonlinear optimization or EM
Hold Kn fixed and use local linear regression to
compute the optimal weights wn

Radial Basis Network Example

K1(d(x1,x))=

exp(-1/2 d(x1,x)2/σ2)

w1 x+ w0

f^(x) = K1 (w1 x+ w0)
+ K2 (w3 x + w2)

Local Linear Models

Local Linear Model Tree (LOLIMOT)

• incremental tree construction algorithm
• partitions input space by axis-orthogonal splits
• adds one local linear model per iteration

1. start with an initial model (e.g. single LLM)
2. identify LLM with worst model error Ei
3. check all divisions : split worst LLM hyper-rectangle

in halves along each possible dimension
4. find best (smallest error) out of possible divisions
5. add new validity function and LLM
6. repeat from step 2. until termination criteria is met

LOLIMOT

Initial global linear model

Split along x1 or x2

Pick split that minimizes
model error (residual)

LOLIMOT Example

LOLIMOT Example

Lazy and Eager Learning

Lazy: wait for query before generalizing
k-nearest neighbors, weighted linear regression

Eager: generalize before seeing query
Radial basis function networks, decision trees, back-
propagation, LOLIMOT

Eager learner must create global approximation
Lazy learner can create local approximations
If they use the same hypothesis space, lazy can
represent more complex functions (H=linear
functions)

