

Lecture 12 Instance Based Learning. Radial basis functions

K-Nearest Neighbor

- Locally weighted regression
- Radial basis functions

When to Consider Nearest Neighbors

- Instances map to points in R^N
- Less than 20 attributes per instance
- Lots of training data
 Advantages:
- Training is very fast
- Learn complex target functions
- Do not loose information

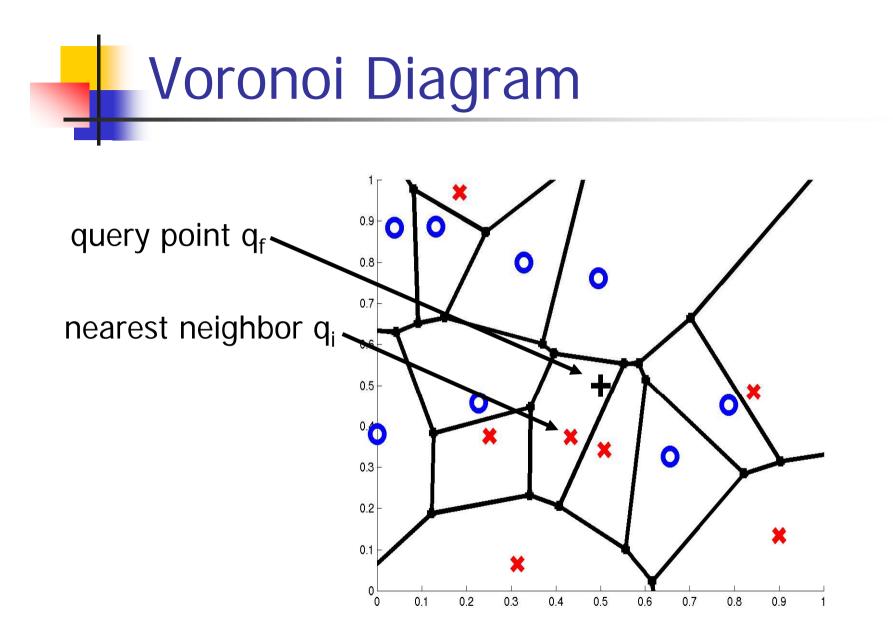
Disadvantages:

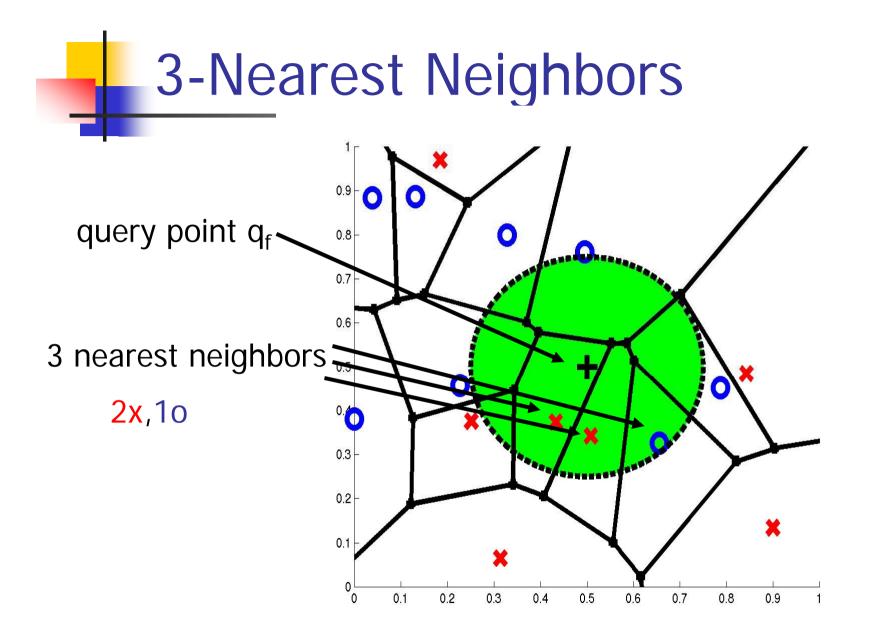
- Slow at query time
- Easily fooled by irrelevant attributes

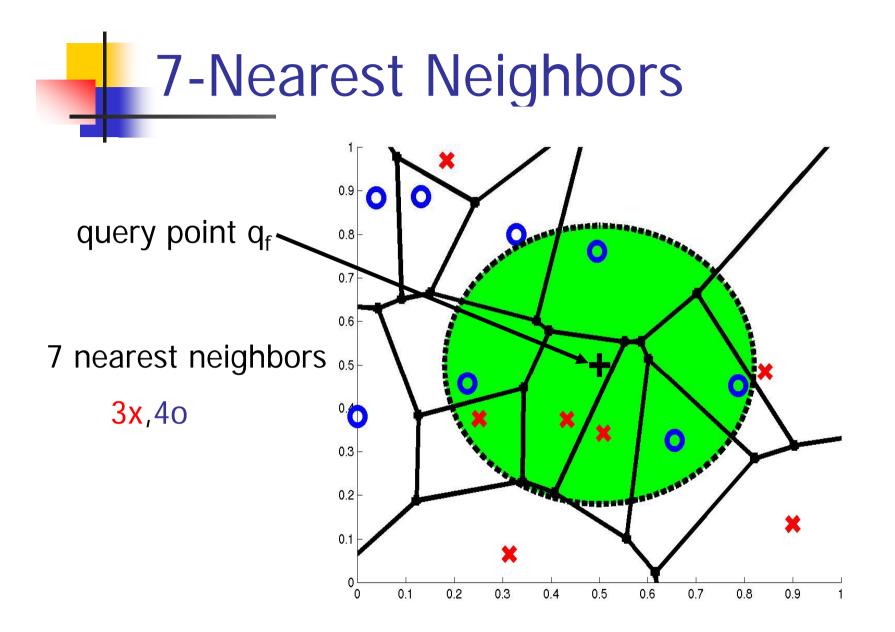
Instance Based Learning

Key idea: just store all training examples $\langle x_i, f(x_i) \rangle$ Nearest neighbor:

- Given query instance x_q, first locate nearest training example x_n, then estimate f(x_q)=f(x_n)
 K-nearest neighbor:
- Given x_q, take vote among its k nearest neighbors (if discrete-valued target function)
- Take mean of f values of k nearest neighbors (if real-valued) $f(x_q) = \sum_{i=1}^{k} f(x_i)/k$

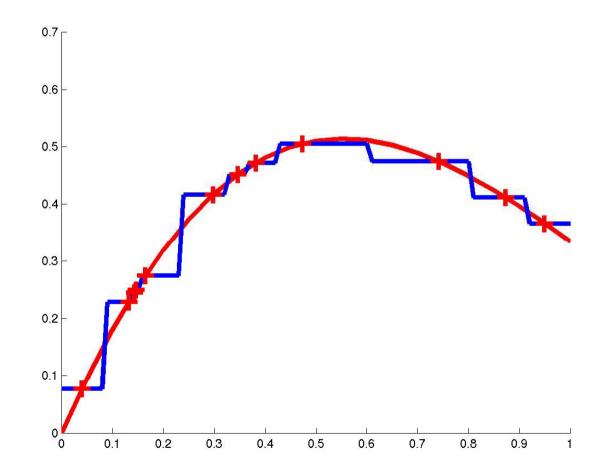






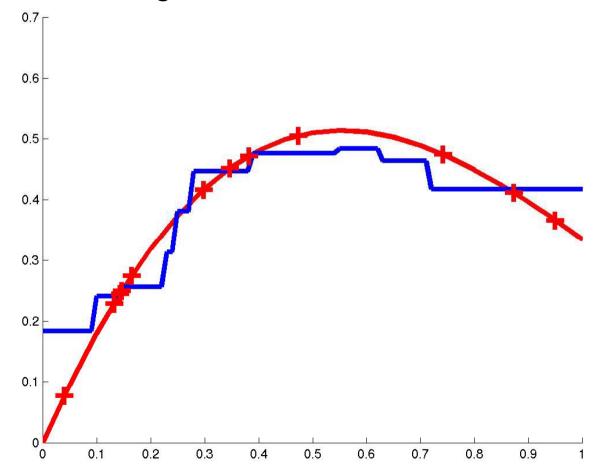
Nearest Neighbor (continuous)

1-nearest neighbor



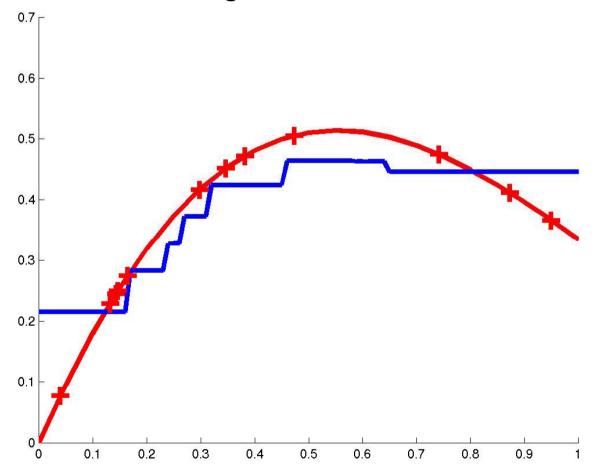
Nearest Neighbor (continuous)

3-nearest neighbor



Nearest Neighbor (continuous)

5-nearest neighbor



Locally Weighted Regression

- Regression means approximating a realvalued target function
- Residual is the error f(x) f(x)in approximating the target function
- Kernel function is the function of distance that is used to determine the weight of each training example. In other words, the kernel function is the function K such that w_i=K(d(x_i,x_q))

Distance Weighted k-NN

Give more weight to neighbors closer to the query point

$$f^{(x_q)} = \sum_{i=1}^{k} w_i f(x_i) / \sum_{i=1}^{k} w_i$$

where $w_i = K(d(x_q, x_i))$

and d(x_q,x_i) is the distance between x_q and x_i Instead of only k-nearest neighbors use all training examples (Shepard's method)

Distance Weighted Average

• Weighting the data:

 $f^{\wedge}(x_{q}) = \sum_{i} f(x_{i}) K(d(x_{i},xq)) / \sum_{i} K(d(x_{i},x_{q}))$

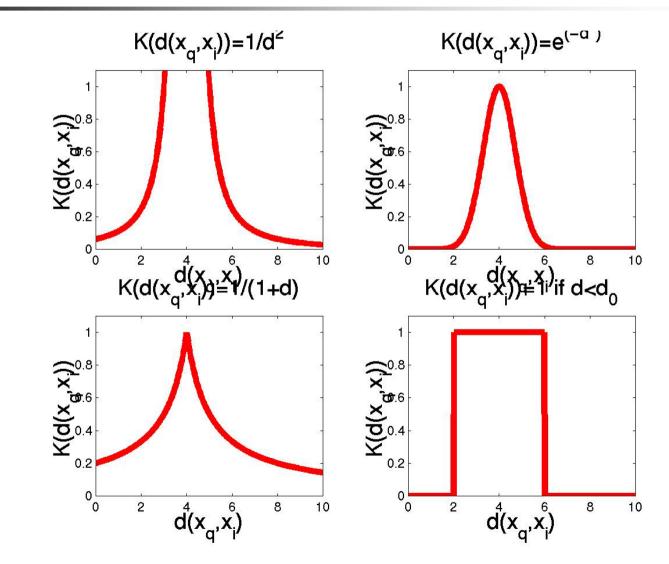
Relevance of a data point (x_i,f(x_i)) is measured by calculating the distance d(x_i,x_q) between the query x_q and the input vector x_i

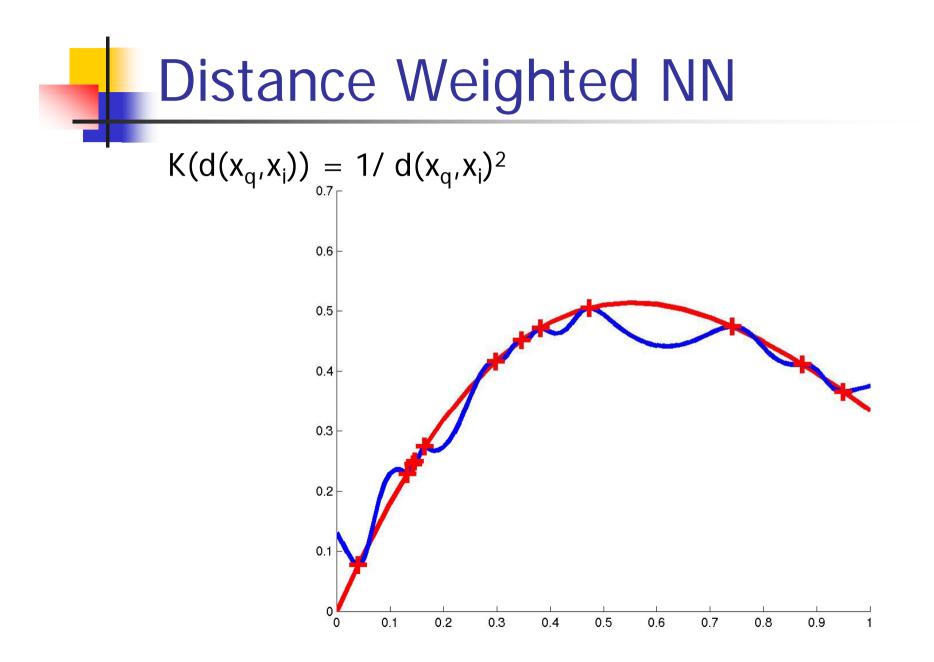
Weighting the error criterion:

 $E(x_q) = \sum_i (f^{\wedge}(x_q) - f(x_i))^2 K(d(x_i, xq))$

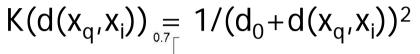
the best estimate $f^{(x_q)}$ will minimize the cost E(q), therefore $\partial E(q)/\partial f^{(x_q)}=0$

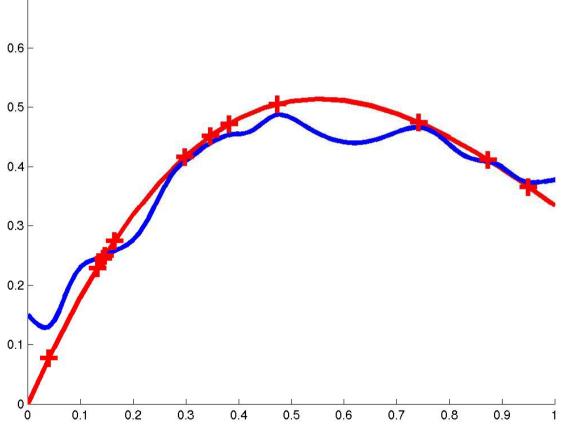
Kernel Functions



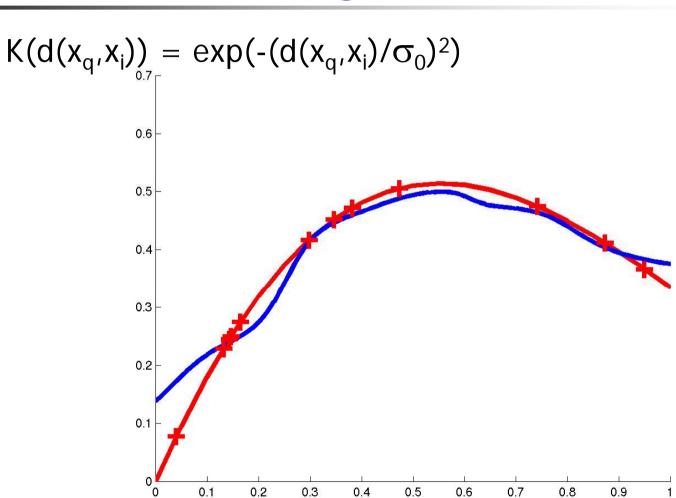


Distance Weighted NN





Distance Weighted NN



Curse of Dimensionality

Imagine instances described by 20 attributes but only are relevant to target function

Curse of dimensionality: nearest neighbor is easily misled when instance space is high-dimensional

One approach:

- Stretch j-th axis by weight z_j, where z₁,..., z_n chosen to minimize prediction error
- Use cross-validation to automatically choose weights z₁,..., z_n
- Note setting zj to zero eliminates this dimension alltogether (feature subset selection)

Linear Global Models

The model is linear in the parameters w_k, which can be estimated using a least squares algorithm

•
$$f^{(x_i)} = \sum_{k=1}^{D} \beta_k x_{ki}$$
 or $F(x) = X \beta$

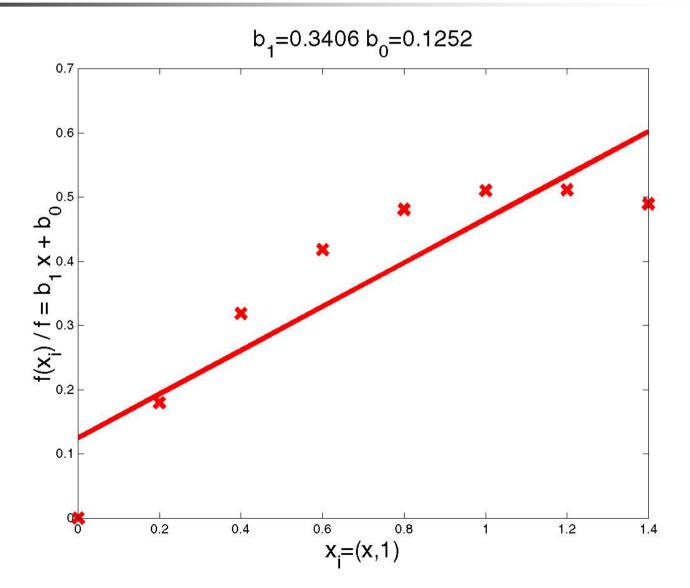
Where $x_i = (x_1, ..., x_D)_i$, i=1..N, with D the input dimension and N the number of data points.

Estimate the w_k by minimizing the error criterion

•
$$E = \sum_{i=1}^{N} (f^{(x_i)} - y_i)^2$$

- $(\mathbf{X}^{\mathsf{T}}\mathbf{X}) \ \beta = \mathbf{X}^{\mathsf{T}} \mathbf{F}(\mathbf{X})$
- $\beta = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{F}(\mathbf{X})$
- $\beta_k = \sum_{m=1}^{D} \sum_{n=1}^{N} (\sum_{l=1}^{D} \mathbf{x}_{kl}^T \mathbf{x}_{lm})^{-1} \mathbf{x}_{mn}^T \mathbf{f}(\mathbf{x}_n)$

Linear Regression Example



Linear Local Models

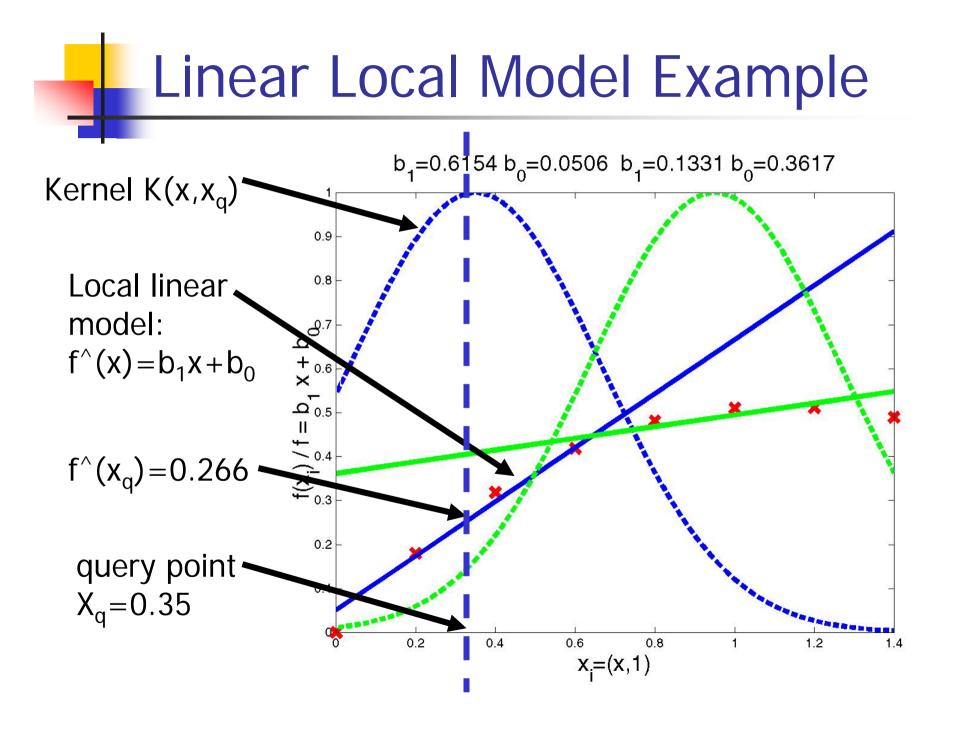
- Estimate the parameters β_k such that they locally (near the query point x_q) match the training data either by
- weighting the data:

 $W_i = K(d(x_i, x_q))^{1/2}$ and transforming $Z_i = W_i X_i$

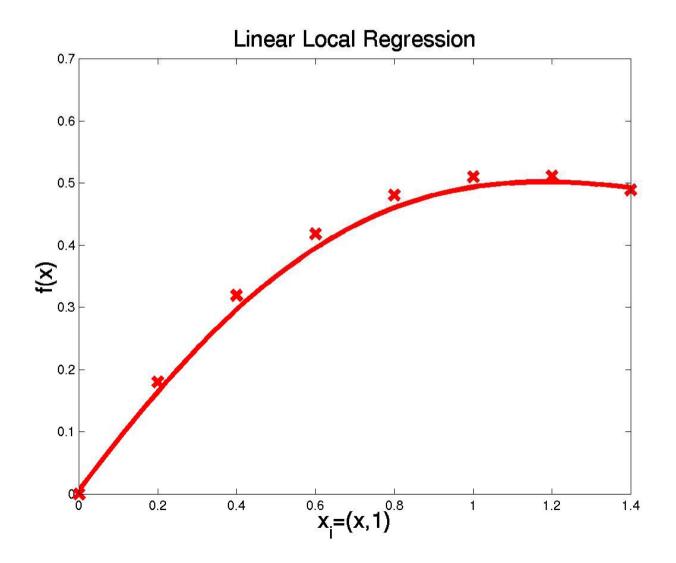
$$v_i = w_i y_i$$

• or by weighting the error criterion:

 $E = \sum_{i=1}^{N} (x_i^{T} \beta - y_i)^2 K(d(x_i, x_q))$ still linear in β with LSQ solution $\beta = ((WX)^{T} WX)^{-1} (WX)^{T} WF(X)$



Linear Local Model Example



Design Issues in Local Regression

- Local model order (constant, linear, quadratic)
- Distance function d

feature scaling: $d(x,q) = (\sum_{j=1}^{d} m_j(x_j-q_j)^2)^{1/2}$ irrelevant dimensions $m_j=0$

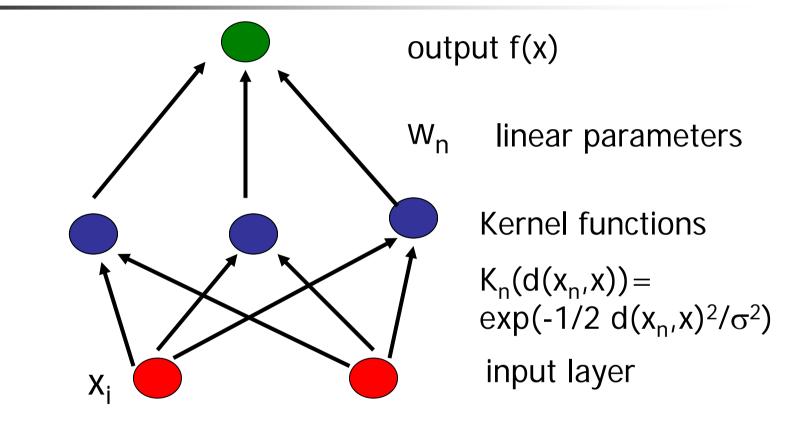
- kernel function K
- smoothing parameter bandwidth h in K(d(x,q)/h)
 - h=|m| global bandwidth
 - h= distance to k-th nearest neighbor point
 - h=h(q) depending on query point
 - h=h_i depending on stored data points

See paper by Atkeson [1996] "Locally Weighted Learning"

Radial Basis Function Network

- Global approximation to target function in terms of linear combination of local approximations
- Used, e.g. for image classification
- Similar to back-propagation neural network but activation function is Gaussian rather than sigmoid
- Closely related to distance-weighted regression but "eager" instead of "lazy"

Radial Basis Function Network

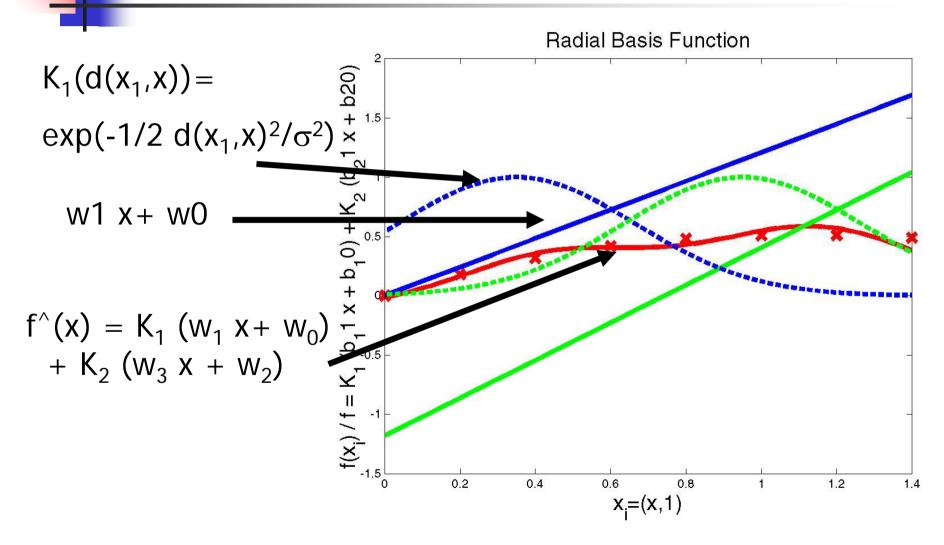


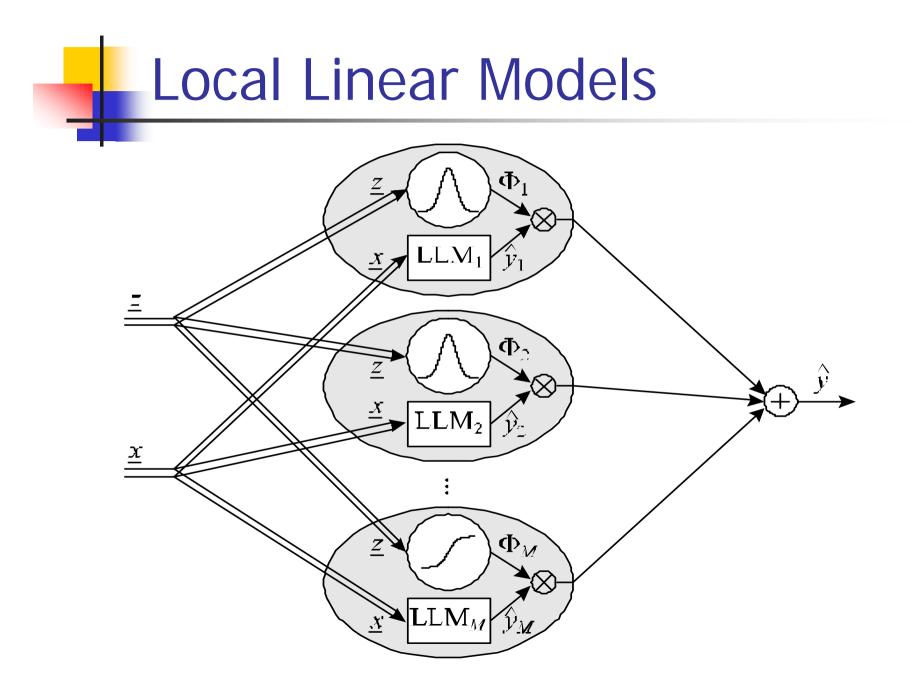
 $f(x) = w_0 + \sum_{n=1}^k w_n K_n(d(x_n, x))$

Training Radial Basis Function Networks

- How to choose the center x_n for each Kernel function K_n?
 - scatter uniformly across instance space
 - use distribution of training instances (clustering)
- How to train the weights?
 - Choose mean x_n and variance σ_n for each K_n nonlinear optimization or EM
 - Hold K_n fixed and use local linear regression to compute the optimal weights w_n

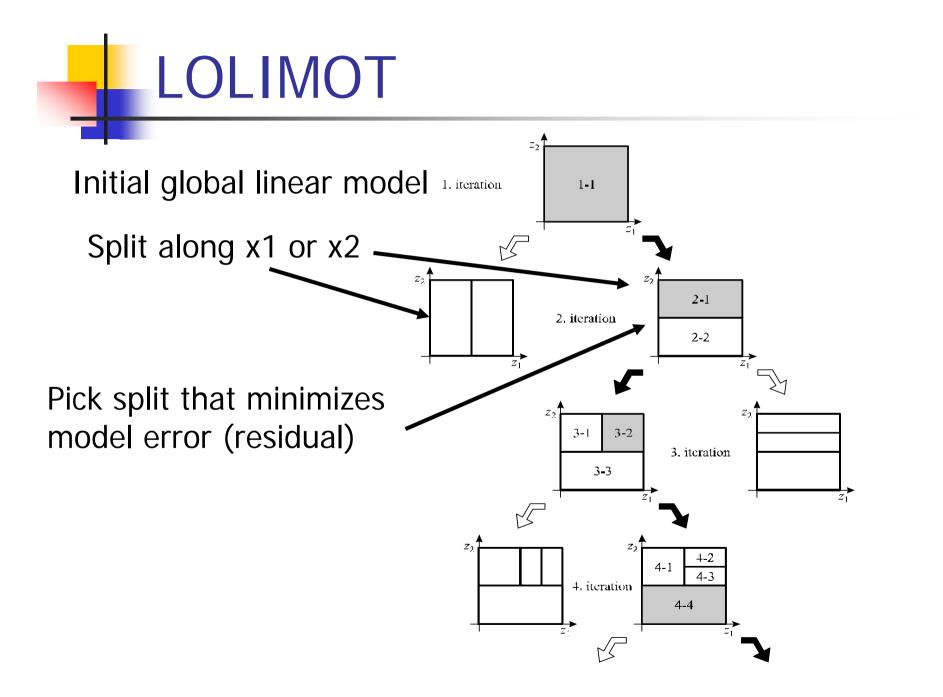
Radial Basis Network Example

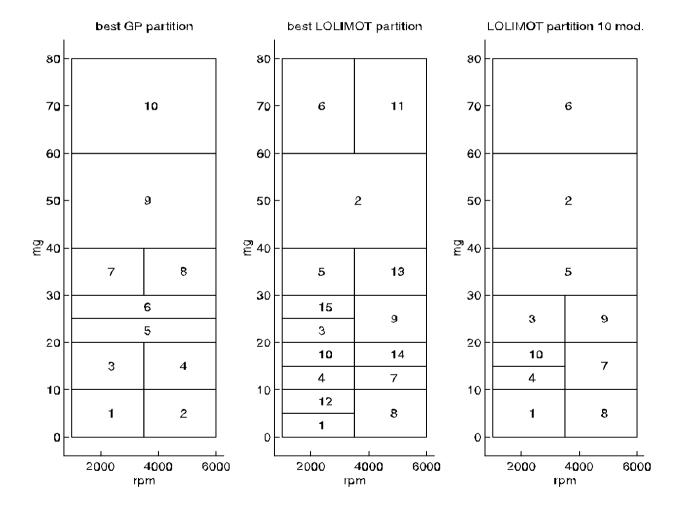


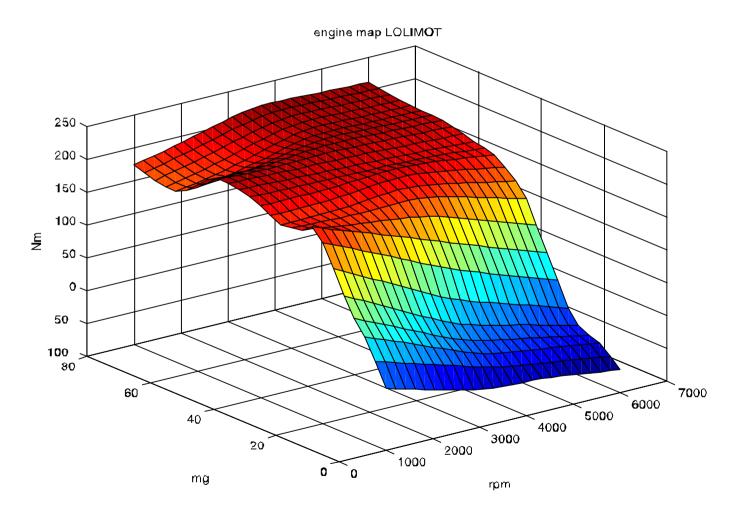


Local Linear Model Tree (LOLIMOT)

- incremental tree construction algorithm
- partitions input space by axis-orthogonal splits
- adds one local linear model per iteration
- 1. start with an initial model (e.g. single LLM)
- 2. identify LLM with worst model error E_i
- 3. check all divisions : split worst LLM hyper-rectangle in halves along each possible dimension
- 4. find best (smallest error) out of possible divisions
- 5. add new validity function and LLM
- 6. repeat from step 2. until termination criteria is met







Lazy and Eager Learning

- Lazy: wait for query before generalizing
 - k-nearest neighbors, weighted linear regression
- Eager: generalize before seeing query
 - Radial basis function networks, decision trees, backpropagation, LOLIMOT
- Eager learner must create global approximation
- Lazy learner can create local approximations
- If they use the same hypothesis space, lazy can represent more complex functions (H=linear functions)