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When to Consider Nearest 
Neighbors

Instances map to points in RN

Less than 20 attributes per instance
Lots of training data

Advantages:
Training is very fast 
Learn complex target functions
Do not loose information

Disadvantages:
Slow at query time 
Easily fooled by irrelevant attributes



Instance Based Learning

Key idea: just store all training examples <xi,f(xi)>
Nearest neighbor:

Given query instance xq, first locate nearest 
training example xn, then estimate f(xq)=f(xn)

K-nearest neighbor:
Given xq, take vote among its k nearest neighbors
(if discrete-valued target function)
Take mean of f values of k nearest neighbors (if
real-valued) f(xq)=Σi=1

k f(xi)/k



Voronoi Diagram

query point qf

nearest neighbor qi



3-Nearest Neighbors

query point qf

3 nearest neighbors

2x,1o



7-Nearest Neighbors

query point qf

7 nearest neighbors

3x,4o



Nearest Neighbor (continuous)
1-nearest neighbor



Nearest Neighbor (continuous)
3-nearest neighbor



Nearest Neighbor (continuous)
5-nearest neighbor



Locally Weighted Regression

Regression means approximating a real-
valued target function
Residual is the error
in approximating the target function 
Kernel function is the function of distance 
that is used to determine the weight of each 
training example. In other words, the kernel 
function is the function K such that 
wi=K(d(xi,xq)) 

ˆ ( ) ( )f x f x−



Distance Weighted k-NN

Give more weight to neighbors closer to the 
query point

f^(xq) = Σi=1
k wi f(xi) / Σi=1

k wi

where wi=K(d(xq,xi))
and d(xq,xi) is the distance between xq and xi

Instead of only k-nearest neighbors use all 
training examples (Shepard’s method) 



Distance Weighted Average

Weighting the data:

f^(xq) = Σi f(xi) K(d(xi,xq))/ Σi K(d(xi,xq))
Relevance of a data point (xi,f(xi)) is measured

by calculating the distance d(xi,xq) between
the query xq and the input vector xi

Weighting the error criterion:

E(xq) = Σi (f^(xq)-f(xi))2 K(d(xi,xq)) 
the best estimate f^(xq) will minimize the cost
E(q), therefore ∂E(q)/∂f^(xq)=0



Kernel Functions



Distance Weighted NN
K(d(xq,xi)) = 1/ d(xq,xi)2



Distance Weighted NN
K(d(xq,xi)) = 1/(d0+d(xq,xi))2



Distance Weighted NN
K(d(xq,xi)) = exp(-(d(xq,xi)/σ0)2) 



Curse of Dimensionality

Imagine instances described by 20 attributes but only
are relevant to target function

Curse of dimensionality: nearest neighbor is easily 
misled when instance space is high-dimensional

One approach:
Stretch j-th axis by weight zj, where z1,…,zn chosen 
to minimize prediction error
Use cross-validation to automatically choose weights
z1,…,zn

Note setting zj to zero eliminates this dimension 
alltogether (feature subset selection)



Linear Global Models
The model is linear in the parameters wk, which 
can be estimated using a least squares algorithm

f^(xi) = Σk=1
D βk xki or F(x) = X β

Where xi=(x1,…,xD)i, i=1..N, with D the input dimension 
and N the number of data points.

Estimate the wk by minimizing the error criterion

E= Σi=1
N (f^(xi) – yi)2

(XTX) β = XT F(X)
β = (XT X)-1 XT F(X)

βk= Σm=1
D Σn=1

N (Σl=1
D xT

kl xlm)-1 xT
mn f(xn)



Linear Regression Example



Linear Local Models
Estimate the parameters βk such that they locally
(near the query point xq) match the training data 
either by 
weighting the data: 
wi=K(d(xi,xq))1/2 and transforming 
zi=wi xi

vi=wi yi

or by weighting the error criterion: 

E= Σi=1
N (xi

T β – yi)2 K(d(xi,xq))
still linear in β with LSQ solution
β = ((WX)T WX)-1 (WX)T WF(X)



Linear Local Model Example

query point 
Xq=0.35

Kernel K(x,xq)

Local linear
model:
f^(x)=b1x+b0

f^(xq)=0.266



Linear Local Model Example



Design Issues in Local 
Regression

Local model order (constant, linear, quadratic)
Distance function d 

feature scaling: d(x,q)=(Σj=1
d mj(xj-qj)2)1/2

irrelevant dimensions mj=0
kernel function K
smoothing parameter bandwidth h in K(d(x,q)/h) 

h=|m| global bandwidth
h= distance to k-th nearest neighbor point
h=h(q) depending on query point
h=hi depending on stored data points

See paper by Atkeson [1996]  ”Locally Weighted Learning”



Radial Basis Function Network

Global approximation to target function in 
terms of linear combination of local 
approximations
Used, e.g. for image classification
Similar to back-propagation neural network 
but activation function is Gaussian rather 
than sigmoid
Closely related to distance-weighted 
regression but ”eager” instead of ”lazy”



Radial Basis Function Network

input layer

Kernel functions

output f(x)

xi

Kn(d(xn,x))=
exp(-1/2 d(xn,x)2/σ2)

wn linear parameters

f(x)=w0+Σn=1
k wn Kn(d(xn,x))



Training Radial Basis Function 
Networks

How to choose the center xn for each Kernel 
function Kn?

scatter uniformly across instance space
use distribution of training instances (clustering)

How to train the weights?
Choose mean xn and variance σn for each Kn

nonlinear optimization or EM
Hold Kn fixed and use local linear regression to
compute the optimal weights wn



Radial Basis Network Example

K1(d(x1,x))=

exp(-1/2 d(x1,x)2/σ2)

w1 x+ w0

f^(x) = K1 (w1 x+ w0)
+ K2 (w3 x + w2)



Local Linear Models



Local Linear Model Tree (LOLIMOT)

• incremental tree construction algorithm
• partitions input space by axis-orthogonal splits
• adds one local linear model per iteration 

1. start with an initial model (e.g. single LLM)
2. identify LLM with worst model error Ei
3. check all divisions : split worst LLM hyper-rectangle 

in halves along each possible dimension
4. find best (smallest error) out of possible divisions
5. add new validity function and LLM 
6. repeat from step 2. until termination criteria is met



LOLIMOT

Initial global linear model

Split along x1 or x2

Pick split that minimizes
model error (residual)



LOLIMOT Example



LOLIMOT Example



Lazy and Eager Learning

Lazy: wait for query before generalizing
k-nearest neighbors, weighted linear regression

Eager: generalize before seeing query
Radial basis function networks, decision trees, back-
propagation, LOLIMOT

Eager learner must create global approximation
Lazy learner can create local approximations
If they use the same hypothesis space, lazy can 
represent more complex functions (H=linear 
functions)


