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Machine Learning
Lecture 13

Bayesian Learning
(Based on Chapter 6 of Mitchell T.., 

Machine Learning, 1997)
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An Introduction
Bayesian Decision Theory came long before Version 
Spaces, Decision Tree Learning and Neural Networks. It 
was studied in the field of Statistical Theory and more 
specifically, in the field of Pattern Recognition. 
Bayesian Decision Theory is at the basis of important 
learning schemes such as the Naïve Bayes Classifier, 
Learning Bayesian Belief Networks and the EM 
Algorithm.
Bayesian Decision Theory is also useful as it provides a 
framework within which many non-Bayesian classifiers 
can be studied (See [Mitchell, Sections 6.3, 4,5,6]).
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Bayesian classification
E.g. How to decide if a patient is ill or healthy, 
based on

• A probabilistic model of the observed data
• Prior knowledge
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Training data: examples of the form (d,h(d))
where d are the data objects to classify (inputs)
and h(d) are the correct class info for d, 
h(d)∈{1,…K}

Goal: given dnew, provide h(dnew)

Classification problem
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Bayes’ Rule
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Bayes Theorem
Goal: To determine the most probable hypothesis, 
given the data D plus any initial knowledge about the 
prior probabilities of the various hypotheses in H.
Prior probability of h, P(h): it reflects any background 
knowledge we have about the chance that h is a correct 
hypothesis (before having observed the data).
Prior probability of D, P(D): it reflects the probability 
that training data D will be observed given no 
knowledge about which hypothesis h holds.
Conditional Probability of observation D, P(D|h): it 
denotes the probability of observing data D given some 
world in which hypothesis h holds. 
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Bayes Theorem (Cont’d)
Posterior probability of h, P(h|D): it represents 
the probability that h holds given the observed 
training data D. It reflects our confidence that h
holds after we have seen the training data D and 
it is the quantity that Machine Learning 
researchers are interested in.
Bayes Theorem allows us to compute P(h|D):

P(h|D)=P(D|h)P(h)/P(D)
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Does patient have cancer or not?

A patient takes a lab test and the result comes back 
positive. It is known that the test returns a correct 
positive result in only 98% of the cases and a correct 
negative result in only 97% of the cases. 
Furthermore, only 0.008 of the entire population has 
this disease.

1. What is the probability that this patient has cancer?
2. What is the probability that he does not have cancer?
3. What is the diagnosis?
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Choosing Hypotheses

Maximum Likelihood
hypothesis:
Generally we want the 
most probable 
hypothesis given 
training data.This is the 
Maximum A Posteriori
hypothesis:

Useful observation: it 
does not depend on the 
denominator P(d)
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Now we compute the diagnosis
To find the Maximum Likelihood hypothesis, we evaluate 
P(d|h) for the data d, which is the positive lab test and 
chose the hypothesis (diagnosis) that maximises it:

To find the Maximum A Posteriori hypothesis, we evaluate 
P(d|h)P(h) for the data d, which is the positive lab test and 
chose the hypothesis (diagnosis) that maximises it. This is 
the same as choosing the hypotheses gives the higher 
posterior probability.
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Maximum A Posteriori (MAP) 
Hypothesis and Maximum Likelihood

Goal: To find the most probable hypothesis h from a set 
of candidate hypotheses H given the observed data D.
MAP Hypothesis, hMAP = argmax h∈H P(h|D)

= argmax h∈H P(D|h)P(h)/P(D)
= argmax h∈H P(D|h)P(h)

If every hypothesis in H is equally probable a priori, we 
only need to consider the likelihood of the data D given 
h, P(D|h). Then, hMAP becomes the Maximum 
Likelihood, 

hML= argmax h∈H P(D|h)P(h)
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Some Results from the Analysis of 
Learners in a Bayesian Framework 

If P(h)=1/|H| and if P(D|h)=1 if D is consistent with h, 
and 0 otherwise, then every hypothesis in the version 
space resulting from D is a MAP hypothesis.
Under certain assumptions regarding noise in the 
data, minimizing the mean squared error (what 
common neural nets do) corresponds to computing 
the maximum likelihood hypothesis.
When using a certain representation for hypotheses, 
choosing the smallest hypotheses corresponds to 
choosing MAP hypotheses (An attempt at justifying 
Occam’s razor) 
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Bayes Optimal Classifier
One great advantage of Bayesian Decision Theory is 
that it gives us a lower bound on the classification error 
that can be obtained for a given problem.
Bayes Optimal Classification: The most probable 
classification of a new instance is obtained by 
combining the predictions of all hypotheses, weighted 
by their posterior probabilities:

argmaxvj∈VΣhi∈ HP(vh|hi)P(hi|D)
where V is the set of all the values a classification can take 

and vj is one possible such classification.
Unfortunately, Bayes Optimal Classifier is usually too 
costly to apply! ==> Naïve Bayes Classifier
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Naïve Bayes Classifier
Let each instance x of a training set D be described by a 
conjunction of n attribute values <a1,a2,..,an> and let f(x),
the target function, be such that f(x) ∈ V, a finite set.
Bayesian Approach:

vMAP = argmaxvj∈ V P(vj|a1,a2,..,an)
= argmaxvj∈ V [P(a1,a2,..,an|vj) P(vj)/P(a1,a2,..,an)]
= argmaxvj∈ V [P(a1,a2,..,an|vj) P(vj)

Naïve Bayesian Approach: We assume that the attribute 
values are conditionally independent so that 
P(a1,a2,..,an|vj) =∏i P(a1|vj) [and not too large a data set is 
required.]           Naïve Bayes Classifier:

vNB = argmaxvj∈ V P(vj) ∏i P(ai|vj) 
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Naïve Bayes Classifier
What can we do if our data d has several attributes?
Naïve Bayes assumption: Attributes that describe data instances are 
conditionally independent given the classification hypothesis

it is a simplifying assumption, obviously it may be violated in reality
in spite of that, it works well in practice

The Bayesian classifier that uses the Naïve Bayes assumption and 
computes the MAP hypothesis is called Naïve Bayes classifier  
One of the most practical learning methods
Successful applications:

Medical Diagnosis
Text classification
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Example. ‘Play Tennis’ data
Day Outlook Temperature Humidity Wind Play

Tennis

Day1 Sunny Hot High Weak No
Day2 Sunny Hot High Strong No

Day3 Overcast Hot High Weak Yes

Day4 Rain Mild High Weak Yes

Day5 Rain Cool Normal Weak Yes

Day6 Rain Cool Normal Strong No

Day7 Overcast Cool Normal Strong Yes

Day8 Sunny Mild High Weak No

Day9 Sunny Cool Normal Weak Yes

Day10 Rain Mild Normal Weak Yes

Day11 Sunny Mild Normal Strong Yes

Day12 Overcast Mild High Strong Yes

Day13 Overcast Hot Normal Weak Yes

Day14 Rain Mild High Strong No
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Naïve Bayes solution
Classify any new datum instance x=(a1,…aT) as:

To do this based on training examples, we need to 
estimate the parameters from the training examples:

For each target value (hypothesis) h

For each attribute value at of each datum instance
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Based on the examples in the table, classify the 
following datum x:
x=(Outl=Sunny, Temp=Cool, Hum=High, 
Wind=strong)
That means: Play tennis or not?

Working:
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Bayesian Belief Networks
The Bayes Optimal Classifier is often too 
costly to apply.
The Naïve Bayes Classifier uses the 
conditional independence assumption to 
defray these costs. However, in many cases, 
such an assumption is overly restrictive.
Bayesian belief networks provide an 
intermediate approach which allows stating 
conditional independence assumptions that 
apply to subsets of the variable.
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Conditional Independence
We say that X is conditionally independent of Y

given Z if the probability distribution governing X is 
independent of the value of Y given a value for Z.
i.e., (∀xi,yj,zk) P(X=xi|Y=yj,Z=zk)=P(X=xi|Z=zk)
or, P(X|Y,Z)=P(X|Z)
This definition can be extended to sets of variables 
as well: we say that the set of variables X1…Xl is 
conditionally independent of the set of variables Y1…Ym
given the set of variables Z1…Zn , if

P(X1…Xl|Y1…Ym,Z1…Zn(=P(X1…Xl|Z1…Zn)
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Representation in Bayesian 
Belief Networks

Storm BusTourGroup

Lightning Campfire

Thunder ForestFire

Each node is asserted to be conditionally independent of 
its non-descendants, given its immediate parents

Associated with each
node is a conditional

probability table, which
specifies the conditional

distribution for the
variable given its

immediate parents in 
the graph
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Kinds of relations between 
variables in Bayesian nets

a) Sequence, influence may be 
distribute from A to C and back 
while value of B is unknown 
b) Divergence, influence may 
be distributed on childes of A 
while A is unknown
c) Convergence, about A 
nothing unknown except that 
may be obtained through its 
parents
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Inference in Bayesian Belief 
Networks

A Bayesian Network can be used to compute the 
probability distribution for any subset of network 
variables given the values or distributions for any 
subset of the remaining variables.
Unfortunately, exact inference of probabilities in 
general for an arbitrary Bayesian Network is 
known to be NP-hard.
In theory, approximate techniques (such as Monte 
Carlo Methods) can also be NP-hard, though in 
practice, many such methods were shown to be 
useful.
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Learning Bayesian Belief 
Networks 3 Cases:

1. The network structure is given in advance and all the 
variables are fully observable in the training examples. 
==> Trivial Case: just estimate the conditional 
probabilities. 

2. The network structure is given in advance but only 
some of the variables are observable in the training 
data. ==> Similar to learning the weights for the hidden 
units of a Neural Net: Gradient Ascent Procedure

3. The network structure is not known in advance. ==> 
Use a heuristic search or constraint-based technique to 
search through potential structures. 
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The EM Algorithm: Learning with 
unobservable relevant variables.

Example:Assume that data points have been uniformly  
generated from k distinct Gaussian with the same known 
variance. The problem is to output a hypothesis       
h=<µ1, µ2  ,.., µk>  that describes the means of each of    
the k distributions. In particular, we are looking for a 
maximum likelihood hypothesis for these means.
We extend the problem description as follows: for each 
point xi, there are k hidden variables zi1,..,zik such that 
zil=1 if xi was generated by normal distribution l and     
ziq= 0 for all q≠l.
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The EM Algorithm (Cont’d)
An arbitrary initial hypothesis h=<µ1, µ2  ,.., µk> is chosen.
The EM Algorithm iterates over two steps:

Step 1 (Estimation, E): Calculate the expected value 
E[zij] of each hidden variable zij, assuming that the 
current hypothesis h=<µ1, µ2  ,.., µk> holds. 
Step 2 (Maximization, M): Calculate a new maximum 
likelihood hypothesis h’=<µ1’, µ2’ ,.., µk’>, assuming the 
value taken on by each hidden variable zij is its expected 
value E[zij] calculated in step 1. Then replace the 
hypothesis h=<µ1, µ2  ,.., µk> by the new hypothesis 
h’=<µ1’, µ2’ ,.., µk’> and iterate.

The EM Algorithm can be applied to more general problems


