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History of SVM

SVM is related to statistical learning theory [3]
SVM was first introduced in 1992 [1] 
SVM becomes popular because of its success in 
handwritten digit recognition 

1.1% test error rate for SVM. This is the same as the error 
rates of a carefully constructed neural network, LeNet 4.

See Section 5.11 in [2] or the discussion in [3] for details

SVM is now regarded as an important example of “kernel 
methods”, one of the key area in machine learning

[1] B.E. Boser et al. A Training Algorithm for Optimal Margin Classifiers. Proceedings of the Fifth Annual Workshop on 
Computational Learning Theory 5 144-152, Pittsburgh, 1992. 

[2] L. Bottou et al.  Comparison of classifier methods: a case study in handwritten digit recognition. Proceedings of the 12th 
IAPR International Conference on Pattern Recognition, vol. 2, pp. 77-82.

[3] V. Vapnik. The Nature of Statistical Learning Theory. 2nd edition, Springer, 1999.
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History of SVM (Cont.)

SVMs introduced in COLT-92 by Boser, Guyon, Vapnik. 
Greatly developed ever since.
Initially popularized in the NIPS community, now an 
important and active field of all Machine Learning 
research.
Special issues of Machine Learning Journal, and Journal 
of Machine Learning Research.
Kernel Machines: large class of learning algorithms, 
SVMs a particular instance.
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High Dimension Mapping (1)

Motivation: Linear inseparable problem becomes linear separable in 
higher dimension space.

[2]
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High Dimension Mapping (2)

2D Blue curve: y=x2+x+1 transfers to 3D Red plane where z’=y, 
y’=x2 , and x’=x.
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Preliminaries

Task of this class of algorithms: detect and exploit 
complex patterns in data (e.g.: by clustering, classifying, 
ranking, cleaning, etc. the data)
Typical problems: how to represent complex patterns; 
and how to exclude spurious (unstable) patterns (= 
overfitting)
The first is a computational problem; the
second a statistical problem.
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Very Informal Reasoning

The class of kernel methods implicitly defines the class 
of possible patterns by introducing a notion of similarity 
between data
Example: similarity between documents

By length
By topic
By language …

Choice of similarity -> Choice of relevant features
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More formal reasoning

Kernel methods exploit information about the inner 
products between data items
Many standard algorithms can be rewritten so that they 
only require inner products between data (inputs)
Kernel functions = inner products in some feature space 
(potentially very complex)
If kernel given, no need to specify what features of the 
data are being used
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Some definitions
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Modularity

Any kernel-based learning algorithm composed of two 
modules:

– A general purpose learning machine
– A problem specific kernel function
Any K-B algorithm can be fitted with any kernel
Kernels themselves can be constructed in a modular way
Great for software engineering (and for analysis)
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What is a good Decision Boundary?

Consider a two-class, linearly 
separable classification problem
Many decision boundaries!

The Perceptron algorithm can be 
used to find such a boundary
Different algorithms have been 
proposed 
Are all decision boundaries 
equally good? Class 1

Class 2
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Examples of Bad Decision Boundaries

Class 1

Class 2

Class 1

Class 2
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Optimal Separating Hyperplane (1)

Only consider classification for 
now;
the optimal separating hyper 
plane is the one which has the 
maximal margin.                                    

[3]
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Optimal Separating Hyperplane (2)

Hyperplane: H(w,b)={x|<w,x>+b=0};
Distance from the hyperplane to origin= -b/ ||w||;
Distance from an arbitrary point X’ to the hyperplane = 
(<w,x’>+b)/ ||w||; 

[2]
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Optimal Separating Hyperplane (3)

[3]
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Optimal Separating Hyperplane (4)
More about canonical form:
To show how canonical form is achieved, let us 
redefine the hyperplane as below,
<u,x> - d = 0, 
where u is a unit vector, and d is the distance of 
the hyperplane to origin;
Note that the same hyperplane is also defined by

<cu,x> - cd = 0, where c is an arbitrary 
positive real number.
The criterion of optimal separating hyperplane 
suggests that we are looking for u, and d such that 
d=(d1+d2)/2, and (d2-d1) is maximized, where 
d1=<x1 ,u>, d2=<x2 ,u>, and x1 and x2 are the 
closest point to the hyperplane for each of the two 
classes.

Let f(x)=<cu,x>-cd;
Then f(x1)=<cu,x1>-cd=cd1-cd=c(d1-d2)/2;
f(x2)=<cu,x2>-cd=cd2-cd=c(d2-d1)/2;
let c(d2-d1)/2=1, then f(x1)=-1, and f(x2)=1;
Hence in canonical form, maximize (d2-d1) is equivalent to minimize c/2, 
If again we define f(x)=<w,x>+b; where w = cu, and b=-cd; note that c=||w||.
Then in canonical form, maximize (d2-d1) is equivalent to minimize ||w||/2.
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Optimal Separating Hyperplane (5)

Optimal Separating Hyperplane turns out to an optimization 
problem of the following form:

It is called the primal problem [3]
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Lagrange multipliers and KKT theorem 

KKT theorem states, a solution to the primal problem must satisfy 
the following,  
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Dual Problem(1)
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Dual Problem(2)

Advantages of Dual Form
with simpler constraints, and convex quadratic program 
algorithms could be applied;
the dimension of input space is replaced by the number of input 
patterns;
both the final decision function and the function be maximized 
are expressed in dot products, which could be computed by a 
kernel in high dimension space.
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1-Linear Learning Machines

Simplest case: classification. Decision function is a 
hyperplane in input space
The Perceptron Algorithm (Rosenblatt, 1957)
Useful to analyze the Perceptron algorithm, before 
looking at SVMs and Kernel Methods in general
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Basic Notation



25



26



27



28



29

Dual representation
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Limitations of LLMs

Linear classifiers cannot deal with
Non-linearly separable data
Noisy data

This formulation only deals with vectorial data
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Non-Linear Classifiers

One solution: creating a net of simple linear classifiers 
(neurons): a Neural Network (problems: local minima; 
many parameters; heuristics needed to train; etc)
Other solution: map data into a richer feature space 
including non-linear features, then use a linear classifier
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Problems with Feature Space

Working in high dimensional feature spaces solves the 
problem of expressing complex functions
BUT:
There is a computational problem (working with very 
large vectors)
And a generalization theory problem (curse of 
dimensionality)
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Implicit Mapping to Feature Space

We will introduce Kernels:
Solve the computational problem of working with many 
dimensions
Can make it possible to use infinite dimensions

– efficiently in time / space
Other advantages, both practical and conceptual
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Kernel Trick

Feature space Mapping

Example: all 2 degree Monomials
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Kernels
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The kernel matrix
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Mercer’s Theorem

The kernel matrix is Symmetric Positive Definite
Any symmetric positive definite matrix can be regarded 
as a kernel matrix, that is as an inner product matrix in 
some space



41

More formal Mercer’s Theorem
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Polynomial kernels 
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Examples of Kernel Functions

Polynomial kernel with degree d

Radial basis function kernel with width s

Closely related to radial basis function neural networks
The feature space is infinite-dimensional

Sigmoid with parameter k and q 

It does not satisfy the Mercer condition on all k and q
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Polynomial kernels
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Example: the two spirals
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Making kernels
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Kernel Functions

In practical use of SVM, the user specifies the kernel 
function; the transformation f(.) is not explicitly stated
Given a kernel function K(xi, xj), the transformation f(.) 
is given by its eigenfunctions (a concept in functional 
analysis)

Eigenfunctions can be difficult to construct explicitly
This is why people only specify the kernel function without 
worrying about the exact transformation

Another view: kernel function, being an inner product, is 
really a similarity measure between the objects 
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More on Kernel Functions

Since the training of SVM only requires the value of K(xi, 
xj), there is no restriction of the form of xi and xj

xi can be a sequence or a tree, instead of a feature vector
K(xi, xj) is just a similarity measure comparing xi and xj
For a test object z, the discriminat function essentially is 
a weighted sum of the similarity between z and a pre-
selected set of objects (the support vectors)
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More on Kernel Functions

Not all similarity measure can be used as kernel 
function, however

The kernel function needs to satisfy the Mercer function, 
i.e., the function is “positive-definite”
This implies that the n by n kernel matrix, in which the (i,j)-
th entry is the K(xi, xj), is always positive definite
This also means that the QP is convex and can be solved in 
polynomial time
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Second property of SVMs
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Example

Suppose we have 5 1D data points
x1=1, x2=2, x3=4, x4=5, x5=6, with 1, 2, 6 as class 1 and 
4, 5 as class 2 ⇒ y1=1, y2=1, y3=-1, y4=-1, y5=1

We use the polynomial kernel of degree 2
K(x,y) = (xy+1)2
C is set to 100

We first find ai (i=1, …, 5) by
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Example

By using a QP solver, we get
a1=0, a2=2.5, a3=0, a4=7.333, a5=4.833
Note that the constraints are indeed satisfied
The support vectors are {x2=2, x4=5, x5=6}

The discriminant function is

b is recovered by solving f(2)=1 or by f(5)=-1 or by 
f(6)=1, as x2 and x5 lie on the line                            
and x4 lies on the line                              
All three give b=9
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Example

Value of discriminant function

1 2 4 5 6

class 2 class 1class 1
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No Free Kernel

If mapping in a space with too many irrelevant features, 
kernel matrix becomes diagonal
Need some prior knowledge of target so choose a good 
kernel
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Convexity

This is a Quadratic Optimization problem: convex, no 
local minima (second effect of Mercer’s conditions)
Solvable in polynomial time …
(convexity is another fundamental property of SVMs)
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Applications of SVMs

Bioinformatics
Machine Vision
Text Categorization
Handwritten Character Recognition
Time series analysis
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Why SVM Work?

The feature space is often very high dimensional. Why 
don’t we have the curse of dimensionality?
A classifier in a high-dimensional space has many 
parameters and is hard to estimate
Vapnik argues that the fundamental problem is not the 
number of parameters to be estimated. Rather, the 
problem is about the flexibility of a classifier
Typically, a classifier with many parameters is very 
flexible, but there are also exceptions

Let xi=10i where i ranges from 1 to n. The classifier
can classify all xi correctly for all possible 

combination of class labels on xi

This 1-parameter classifier is very flexible
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Why SVM works?

Vapnik argues that the flexibility of a classifier should 
not be characterized by the number of parameters, but 
by the flexibility (capacity) of a classifier

This is formalized by the “VC-dimension” of a classifier
Consider a linear classifier in two-dimensional space
If we have three training data points, no matter how 
those points are labeled, we can classify them perfectly



65

VC-dimension

However, if we have four points, we can find a labeling 
such that the linear classifier fails to be perfect

We can see that 3 is the critical number
The VC-dimension of a linear classifier in a 2D space is 3 
because, if we have 3 points in the training set, perfect 
classification is always possible irrespective of the 
labeling, whereas for 4 points, perfect classification can 
be impossible
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VC-dimension

The VC-dimension of the nearest neighbor classifier is 
infinity, because no matter how many points you have, 
you get perfect classification on training data
The higher the VC-dimension, the more flexible a 
classifier is
VC-dimension, however, is a theoretical concept; the VC-
dimension of most classifiers, in practice, is difficult to 
be computed exactly

Qualitatively, if we think a classifier is flexible, it probably
has a high VC-dimension
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Choosing the Kernel Function

Probably the most tricky part of using SVM.
The kernel function is important because it creates the 
kernel matrix, which summarizes all the data
Many principles have been proposed (diffusion kernel, 
Fisher kernel, string kernel, …)
There is even research to estimate the kernel matrix 
from available information

In practice, a low degree polynomial kernel or RBF 
kernel with a reasonable width is a good initial try
Note that SVM with RBF kernel is closely related to RBF 
neural networks, with the centers of the radial basis 
functions automatically chosen for SVM
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Software

A list of SVM implementation can be found at 
http://www.kernel-machines.org/software.html
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Summary: Steps for Classification

Prepare the pattern matrix
Select the kernel function to use
Select the parameter of the kernel function and the 
value of C

You can use the values suggested by the SVM software, or 
you can set apart a validation set to determine the values 
of the parameter

Execute the training algorithm and obtain the αi

Unseen data can be classified using the αi and the 
support vectors
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Strengths and Weaknesses of SVM

Strengths
Training is relatively easy 

No local optimal, unlike in neural networks

It scales relatively well to high dimensional data
Tradeoff between classifier complexity and error can be 
controlled explicitly
Non-traditional data like strings and trees can be used as 
input to SVM, instead of feature vectors

Weaknesses
Need to choose a “good” kernel function.
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Conclusion

SVM is a useful alternative to neural networks
Two key concepts of SVM: maximize the margin and the 
kernel trick
Many SVM implementations are available on the web for 
you to try on your data set!
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Resources

http://www.kernel-machines.org/
http://www.support-vector.net/
http://www.support-vector.net/icml-tutorial.pdf
http://www.kernel-machines.org/papers/tutorial-
nips.ps.gz
http://www.clopinet.com/isabelle/Projects/SVM/applist.h
tml


