!'_ Machine Learning

Lecture 14
Support Vector Machines



Outline

= A brief history of SVM

= Large-margin linear classifier
= Linear separable
= Nonlinear separable

= Creating nonlinear classifiers: kernels
= A simple example

= Discussion on SVM

= Conclusion




History of SVM

= SVM is related to statistical learning theory [3]
= SVM was first introduced in 1992 [1]

= SVM becomes popular because of its success in
handwritten digit recognition

= 1.1% test error rate for SVM. This is the same as the error
rates of a carefully constructed neural network, LeNet 4.

« See Section 5.11 in [2] or the discussion in [3] for detalils

= SVM is now regarded as an important example of “kernel
methods”, one of the key area in machine learning

[1] B.E. Boser et al. A Training Algorithm for Optimal Margin Classifiers. Proceedings of the Fifth Annual Workshop on

Computational Learning Theory 5 144-152, Pittsburgh, 1992.
[2] L. Bottou et a/. Comparison of classifier methods: a case study in handwritten digit recognition. Proceedings of the 12th

IAPR International Conference on Pattern Recognition, vol. 2, pp. 77-82.
[3] V. Vapnik. The Nature of Statistical Learning Theory. 2" edition, Springer, 1999.



History of SVM (Cont.)

= SVMs introduced in COLT-92 by Boser, Guyon, Vapnik.
Greatly developed ever since.

= Initially popularized in the NIPS community, now an
Important and active field of all Machine Learning
research.

= Special issues of Machine Learning Journal, and Journal
of Machine Learning Research.

= Kernel Machines: large class of learning algorithms,
SVMs a particular instance.



=k High Dimension Mapping (1)

higher dimension space.
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Motivation: Linear inseparable problem becomes linear separable in

[2]



we High Dimension Mapping (2)

= 2D Blue curve: y=x2+x+1 transfers to 3D Red plane where z'=y,
y'=x2 , and xX'=X.




Preliminaries

= Task of this class of algorithms: detect and exploit
complex patterns in data (e.g.: by clustering, classifying,
ranking, cleaning, etc. the data)

= Typical problems: how to represent complex patterns;
and how to exclude spurious (unstable) patterns (=
overfitting)

= The first is a computational problem; the
= second a statistical problem.



Very Informal Reasoning

= The class of kernel methods implicitly defines the class
of possible patterns by introducing a notion of similarity
between data

= Example: similarity between documents
= By length
= By topic
= By language ...

= Choice of similarity -> Choice of relevant features



More formal reasoning

= Kernel methods exploit information about the inner
products between data items

= Many standard algorithms can be rewritten so that they
only require inner products between data (inputs)

= Kernel functions = inner products in some feature space
(potentially very complex)

= If kernel given, no need to specify what features of the
data are being used




=t. Some definitions

¢ |nner product between vectors

e Hyperplane: *"
(w,x)+b=0
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Modularity

= Any kernel-based learning algorithm composed of two
modules:

— A general purpose learning machine

— A problem specific kernel function

= Any K-B algorithm can be fitted with any kernel

= Kernels themselves can be constructed in a modular way
= Great for software engineering (and for analysis)
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=L What Is a good Decision Boundary?

= Consider a two-class, linearly
separable classification problem
= Many decision boundaries!

= The Perceptron algorithm can be
used to find such a boundary

= Different algorithms have been
proposed

= Are all decision boundaries
equally good?

»
|

Class 2
., @ ©
"“’ O
. 0’ O
L] ®
N N
L] ]
Class 1

12



=+ Examples of Bad Decision Boundaries
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=k Optimal Separating Hyperplane (1)

= Only consider classification for
now,

= the optimal separating hyper
plane is the one which has the
maximal margin.

[3]
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Optimal Separating Hyperplane (2)

<w.,x>+h >0

<w,x>+b <0 /I

IxX|<w.,x>+bH=0}

\

B Selilkogd, NIIS, 3 Desvenieer 300

[2]

Hyperplane: H(w,b)={x|<w,x>+b=0};
= Distance from the hyperplane to origin= -b/ ||w]|;

= Distance from an arbitrary point X' to the hyperplane =
(<w,x’>+b)/ [|wl]];



=k Optimal Separating Hyperplane (3)

Note:

<Wh x]>+b= +1
<W, x2>+b=—l

...... ____\1 {X|<:W',I>+b:0}

\ 1
i \ \
\ \

Note: if ¢ £ 0, then
{x| (w,x) + b =0} = {x]| {ecw,x) + cb = O}.
Hence (ew, ¢b) describes the same hyperplane as (w, b).

Definition: The hyperplane is in canonical form w.r.t. X™ = [3]
{xX1,--.>%r} if miny e x | {W,x;) + 0| = 1.
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we Optimal Separating Hyperplane (4)

ore about canonical form:

o show how canonical form is achieved, let us
redefine the hyperplane as below,

<ux>-d=0,

where vis a unit vector, and d'is the distance of 2
the hyperplane to origin;

= Note that the same hyperplane is also defined by
<cu,x> - cd = 0, where cis an arbitrary
positive real number.

= The criterion of optimal separating hyperplane TAL
suggests that we are looking for v, and d such thi :
=(d1+d2)/2, and (d2-d1)is maximized, where
dl=<xl1 ,u>, d2=<x2 ,u>, and xI and x2 are th
closest point to the hyperplane for each of the tw:
classes.

s Let fx)=<cu,x>-cd;
Then f(x,)=<cu,x,>-cd=cd,-cd=c(d,-d,)/2;
f(x,)=<cu,x,>-ca=cd,-cd=c(d,-d )/2;

= let ¢(d,-d)/2=1, then f(x,)=-1, and f(x,)=1,;
Hence in canonical form, maximize (d,-d,) is equivalent to minimize ¢/2,

= If again we define f(x)=<w,x>+b; where w = cu, and b=-cd; note that c=//w//.
Then in canonical form, maximize (d2-d1) is equivalent to minimize //w///2.
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= Optimal Separating Hyperplane (5)

Optimal Separating Hyperplane turns out to an optimization
problem of the following form:

1
win - 5w, w)
st yi((w,x;) +b) > 1 i=1,2,....,n

1. Convex quadratic program
2. Linear inequality constraints (many!)

[3]

miltiscall 3. ¢+1 parameters, n constraints
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= Lagrange multipliers and KKT theorem

Introduce Lagrange multipliers «y; > 0 and a Lagrangian

L(w, b)) = SIWIP = > e (- w33} 8] — 1).
=1

= KKT theorem states, a solution to the primal problem must satisfy
the following,

) J
srliwba) =0, ==L(w,b,0)=0,

L. w=) awx E ay; =0

and > e (i [(waox) +4]— 1) =0
=1
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Kuhn-Tucker Theorem

Properties of the solution:
e Duality: can use kernels
e KKT conditions: (',E;'[J’;‘({H‘_ ,T,-} 4 E;] — ]] =3

e Sparseness: only thgiﬁuints nearest to the hyperplane
(margin = 1) have positive weight
W = Z OGViXi

e They are called support vectors

20



weDual Problem(1)

Substitute both into L to get the dual problem ~ Puet mossmize

m m
N 1
Wia) = E a‘t ~ 35 E aiajy‘iyj<x’iixj>
=1 7=l
subject to

1
a; >0, 1=1,..., m, and Z@i%=0-

=1
m
W= Z QliXg
=1
where for all i = 1,...,m either

yi - [{w, %) +0] > 1 = ; = 0 — X; irrelevant
or
yi* [(w,x;) +b] =1 (on the margin) — x; “Support Vector”

The solution is determined by the examples on the margin.
Thus

) = s (o W) )
= sgn (Zt.:'l (X, X;) + b) :
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Dual Problem(2)

= Advantages of Dual Form

= With simpler constraints, and convex quadratic program
algorithms could be applied;

= the dimension of input space is replaced by the number of input
patterns;

= both the final decision function and the function be maximized
are expressed in dot products, which could be computed by a
kernel in high dimension space.
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1-Linear Learning Machines

= Simplest case: classification. Decision function is a
hyperplane in input space
= The Perceptron Algorithm (Rosenblatt, 1957)

= Useful to analyze the Perceptron algorithm, before
looking at SVMs and Kernel Methods in general

23



=t Basic Notation

e |nput space
e Qutput space
e Hypothesis
e Real-valued:
e [raining Set
e [esterror

e Dot product

velX

vel¥={-1+1}

he H

fX—=R
S={(xr.w).....(xi, vi).....}
£

{x.z)

24



Perceptron
G —

e Linear Separation of the
iInput space

f(x)=(w.x)+b
h(x) = sign(f(x))

25



Perceptron Algorithm

cc
Update rule
(ignoring threshold): )
o If L‘l]’((‘li‘k.l‘z’”iﬂ then " ‘
Wk +1 6= Wk + 1]ViXi " .‘

ke—k+1




Observations
Gl

e Solution is a linear combination of training
points 4, — Z OliyiXi

i = 0

e Only used informative points (mistake driven)

¢ T[he coefficient of a point in combination
reflects its ‘difficulty’

27



Observations - 2
- /07

e Mistake bound: ~
P 2

M < (—]
14

e coefficients are non-negative

e possible to rewrite the algorithm using this alternative
representation

¥
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=t Dual representation

The decision function can be re-written as
follows:

f)=(w,x)+b= Z(}ﬁ;w(.ﬂjx) +b

W = Z OGViXi

e And also the update rule can be rewritten as follows:

o Note: in dual representation, data appears only inside
dot products

29



Duality: First Property of SVMs

e DUALITY is the first feature of Support Vector
Machines

e SVMs are Linear Learning Machines
represented in a dual fashion

f(x)=(w,x)+b= z&}%(;m*) +b

e Data appear only within dot products (in
decision function and in training algorithm)

30



Limitations of LLMs

= Linear classifiers cannot deal with
= Non-linearly separable data
= Noisy data

= This formulation only deals with vectorial data

31



=L Non-Linear Classifiers

= One solution: creating a net of simple linear classifiers
(neurons): a Neural Network (problems: local minima;
many parameters; heuristics needed to train; etc)

= Other solution: map data into a richer feature space
iIncluding non-linear features, then use a linear classifier

32



Learning in the Feature Space
-— ]

e Map data into a feature space where they are
linearly separable X — Cﬁ)(’f)

33



Problems with Feature Space

= Working in high dimensional feature spaces solves the
problem of expressing complex functions
n BUT:

= There is a computational problem (working with very
large vectors)

= And a generalization theory problem (curse of
dimensionality)

34
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Implicit Mapping to Feature Space

= \We will introduce Kernels:

= Solve the computational problem of working with many
dimensions

= Can make it possible to use infinite dimensions
— efficiently in time / space
= Other advantages, both practical and conceptual

35



Kernel-Induced Feature Spaces
G

¢ In the dual representation, the data points only
appear inside dot products:

f(x)= z(%ﬁ( A0 x)) +D

e The dimensionality of space F not necessarily
important. May not even know the map

36
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Kernel Trick

Feature space Mapping

Preprocess the data with

o: X - H
x — Px),

where H is a dot product space, and learn the mapping from o(x)
to 1.

= Example: all 2 degree Monomials
d:RZ2 5 R
(x1,@2) = (21,29, 23) = (¢, V22122, ¥3)
2
{(B(z), 8(z)) = (%, V2 129, 23)(2'], V2 2hah, 2F)
)
= (z.)’

= : k(z, z)
— the dot product in # can be computed in R?

37



=t Kernels

¢ A function that returns the value of the dot
product between the images of the two
arguments

K(x1,x2) = (¢(x1), (x2))
e Given a function K, it is possible to verify that it

s a kernel

e One can use LLMs in a feature space by
simply rewriting it in dual representation and
replacing dot products with kernels:

(x1,x2) ¢ K(x1,x2) = <(E)(11)¢'(12)>

38



=L The kernel matrix

¢ (aka the Gram matrix):

K(1,1) | K(1.2) |K(1,3) |... K(1,m)

KIZ1) | Ki2,2) |K(23) |.. K(2,m)
K=

Kim,1) | Kim,2) |Kim3) |... K(m.m)

e [he central structure in kernel machines

¢ Information ‘bottleneck’: contains all necessary
information for the learning algorithm

e Fuses information about the data AND the
kernel

e Many interesting properties:



Mercer’s Theorem

= The kernel matrix is Symmetric Positive Definite

= Any symmetric positive definite matrix can be regarded
as a kernel matrix, that is as an inner product matrix in
some space

40



=t More formal Mercer’s Theorem

e Every (semi) positive definite, symmetric
function is a kernel: i.e. there exists a mapping

¢

such that it is possible to write:
K(x1,x2)= <¢>(11) (D(lz))

Pos. Def. [k (x.2)f(x)f(2)dxdz 2 0
Vfe L
e Eigenvalues expansion of Mercer's Kernels:

K(x1,x2) = Z/l-:(bi(m)qbf(m)

e Thatis: the eigenfunctions act as features |

41



Examples of Kernels

e Simple examples of kernels are:

K(x,z)={(x, z)d

K(JC Z’) — {f‘"-"—:";' 20

x = (x1.x2): Polynomial kernels

= (z1, z2);

L

-

(x,z)" =(x1z1+ x222)% =

2_2 2_2
= Xx;zZ, +x5z; +2x1Z1x222 =

— 'IIII(:\:IE . .—T; - ‘\,.J'IIE:TLTE): (:12 _L_,_jz . W"IE:I:E);:I —

= {(d(x),P(2))

42



Examples of Kernel Functions

= Polynomial kernel with degree d
K(x,y) = (xly + 1)4
= Radial basis function kernel with width s

K(x,y) = exp(~|lx — y|[?/(202))

= Closely related to radial basis function neural networks
= The feature space is infinite-dimensional

= Sigmoid with parameter k and g
K(x,y) = tanh(xkxly 4+ 0)

= It does not satisfy the Mercer condition on all k and

43



=& Polynomial kernels

44



=L Example: the two spirals

e Separated by a hyperplane
(gaussian kernels)

N feature space

45



=t Making kernels

e [he set of kernels Is closed under some
operations. If K, K" are kernels, then:

K+K' is a kernel

cK is a kernel, if ¢c>0

aK+bK' is a kernel, for a,b =0
Etc efc etc......

can make complex kernels from simple ones:
modularity |

46



Kernel Functions

= In practical use of SVM, the user specifies the kernel
function; the transformation f(.) is not explicitly stated
= Given a kernel function A(xi, Xj), the transformation f(.)
IS given by its eigenfunctions (a concept in functional
analysis)
= Eigenfunctions can be difficult to construct explicitly
= This is why people only specify the kernel function without
worrying about the exact transformation

= Another view: kernel function, being an inner product, is
really a similarity measure between the objects

47



More on Kernel Functions

= Since the training of SVM only requires the value of A(xi,
X]), there is no restriction of the form of Xi and X

= XI can be a sequence or a tree, instead of a feature vector
= K(XI, X]) Is just a similarity measure comparing Xi and X]j
= For a test object z, the discriminat function essentially is

a weighted sum of the similarity between z and a pre-
selected set of objects (the support vectors)

f(z) =) oy K(z,x;)+0b

X; €S
S . the set of support vectors

48



=t More on Kernel Functions

= Not all similarity measure can be used as kernel
function, however

= The kernel function needs to satisfy the Mercer function,
l.e., the function is “positive-definite”

= This implies that the 7 by n kernel matrix, in which the (i,j)-
th entry is the A(xi, Xj), Is always positive definite

= This also means that the QP is convex and can be solved In
polynomial time

49



=t Second property of SVMs

SVMs are Linear Learning Machines, that

e Use a dual representation

AND

e Operate in a kernel induced feature space

(that is: fx)= zﬁﬁ(ﬂﬁ(ﬂﬁ}ﬂﬁ' )} +5b

Is a linear function in the feature space implicitely
defined by K)

50



Kernels over General Structures
]

e Haussler, Watkins, etc: kernels over sets, over
sequences, over frees, eic.

e Applied in text categorization, bioinformatics,

o .
* plx)
(o) pix)

§(0) $ix)

@ (o)
hix)

pio)
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A bad kernel ...
-1

e ... would be a kernel whose kernel matrix is
mostly diagonal: all points orthogonal to each
other, no clusters, no structure ...

1 0 0 0
0 1 0 0
1




Example

= Suppose we have 5 1D data points
=« X1=1, x2=2, x3=4, x4=5, x5=6, with 1, 2, 6 as class 1 and
4,5 as class 2 = y1=1, y2=1, y3=-1, y4=-1, y5=1
= We use the polynomial kernel of degree 2
=K(X,y) = (xy+1)2
=« C is set to 100
= We first find ai (~=1, ..., 5) by

Z oy — = Z Z g ]y’l,y](x £L g + 1)2

z—l 1=1

subject to 100 > «; > 0, Y  a;y; =0
i=1
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Example

= By using a QP solver, we get
xal1=0, a2=2.5, a3=0, a4=7.333, ab=4.833
= Note that the constraints are indeed satisfied

= The support vectors are {x2=2, x4=5, x5=6}

= The discriminant function is as yf K(z,x5)

f(2)
= 2.5(1)(22 4+ 1)?+7.333(=1)(52 4+ 1)? + 4.833(1)(6z 4+ 1)° + b
— 0.66672° — 5.3332+ b
= OIS recovered by solving f(2)=1 or by f(5)=-1 or by
f(6)=1, as x2 and x5 lie on p(w)  ¢p(x) +b=1
and x4 lies on tp(w)'¢(x) +b= —1
= All three give b=9==b f(2) = 0.666722 — 5.3332+ 9

54



=& Example

Value of discriminant function
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=L No Free Kernel

= If mapping in a space with too many irrelevant features,
kernel matrix becomes diagonal

= Need some prior knowledge of target so choose a good
kernel

56



Convexity

= This is a Quadratic Optimization problem: convex, no
local minima (second effect of Mercer’s conditions)

= Solvable in polynomial time ...
= (convexity is another fundamental property of SVMs)
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KKT Conditions Imply Sparseness
]

Sparseness:
another fundamental property of SVMs
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Properties of SVMs - Summary
-

v

v

v

v

v

Duality
Kernels
Margin
Convexity
Sparseness

59



Dealing with noise
a7

In the case of non-separable data
. In feature space, the margin distribution

~._canbe Dptimizad (R 2)3
.|.
o] 1/25
! m Y-
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The Soft-Margin Classifier

I —
l

Minimize: _ “ ” +C

2 Z o

l
Or 5 w,w)+C 25
Sl }%‘[{11:; :n:f> +b)21-Ci
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Applications of SVMs

= Bioinformatics

= Machine Vision

= Text Categorization

= Handwritten Character Recognition
= Time series analysis
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Why SVM Work?

= The feature space is often very high dimensional. Why
don’'t we have the curse of dimensionality?

= A classifier in a high-dimensional space has many
parameters and is hard to estimate

= Vapnik argues that the fundamental problem is not the
number of parameters to be estimated. Rather, the
problem is about the flexibility of a classifier

= Typically, a classifier with many parameters is very
flexible, but there are also exceptions
= Let x=10"' where i ranges from 1 to n. The classifier

Yy = Sigﬂ(Sin(OéSU)) can classify all x; correctly for all possible
combination of class labels on x

= This 1-parameter classifier is very flexible
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Why SVM works?

= Vapnik argues that the flexibility of a classifier should
not be characterized by the number of parameters, but
by the flexibility (capacity) of a classifier

= This is formalized by the “VC-dimension” of a classifier
= Consider a linear classifier in two-dimensional space

= If we have three training data points, no matter how
those points are labeled, we can classify them perfectly

O O ® ® O O

64



VC-dimension

= However, if we have four points, we can find a labeling
such that the linear classifier fails to be perfect

@ ©

O O

= We can see that 3 Is the critical number

= The VC-dimension of a linear classifier in a 2D space is 3
because, if we have 3 points in the training set, perfect
classification is always possible irrespective of the
labeling, whereas for 4 points, perfect classification can
be impossible

65



VC-dimension

= The VC-dimension of the nearest neighbor classifier is
Infinity, because no matter how many points you have,
you get perfect classification on training data

= The higher the VC-dimension, the more flexible a
classifier is

= VC-dimension, however, Is a theoretical concept; the VC-
dimension of most classifiers, in practice, is difficult to
be computed exactly

= Qualitatively, if we think a classifier is flexible, it probably
has a high VC-dimension
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Choosing the Kernel Function

= Probably the most tricky part of using SVM.

= The kernel function is important because it creates the
kernel matrix, which summarizes all the data

= Many principles have been proposed (diffusion kernel,
Fisher kernel, string kernel, ...)

s There Is even research to estimate the kernel matrix
from available information

= In practice, a low degree polynomial kernel or RBF
kernel with a reasonable width is a good Initial try

= Note that SVM with RBF kernel is closely related to RBF
neural networks, with the centers of the radial basis
functions automatically chosen for SVM
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=L Software

= A list of SVM implementation can be found at
http://www.kernel-machines.org/software.html
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Summary: Steps for Classification

= Prepare the pattern matrix
a Select the kernel function to use

= Select the parameter of the kernel function and the
value of C

= YOU can use the values suggested by the SVM software, or
you can set apart a validation set to determine the values
of the parameter

= Execute the training algorithm and obtain the o,

= Unseen data can be classified using the o; and the
support vectors
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Strengths and Weaknesses of SVM

= Strengths

= Training is relatively easy
= No local optimal, unlike in neural networks

= It scales relatively well to high dimensional data

= Tradeoff between classifier complexity and error can be
controlled explicitly

= Non-traditional data like strings and trees can be used as
Input to SVM, instead of feature vectors

= Weaknesses
= Need to choose a “good” kernel function.

70



Conclusion

= SVM Is a useful alternative to neural networks

= Two key concepts of SVM: maximize the margin and the
kernel trick

= Many SVM implementations are available on the web for
you to try on your data set!
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Resources

= http://www.kernel-machines.org/
= http://www.support-vector.net/
= http:.//www.support-vector.net/icml-tutorial.pdf

= http://www.kernel-machines.org/papers/tutorial-
Nips.ps.gz

= http://www.clopinet.com/isabelle/Projects/SVM/applist.h
tml
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