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Outline

Reinforcement Learning Problem
Principle of optimality
Markov Decision Process
Monte-Carlo Methods
Temporal Difference Learning
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RL brings a way of programming 
agents by reward and punishment 
without specifying how the task is to be 
achieved. (Kaelbling,1996)

Based on trial-error interactions

A set of problems rather than a set 
of techniques

Any definition
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Control Learning
Learning to choose actions

Robot learning to dock to a battery station
Learning to choose actions to optimize a factory output
Learning to play Backgammon

Problem characteristics:
Delayed reward
No direct feedback (error signal) for good and bad 
actions
Opportunity for active exploration
Possibly that state is only partially observable
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Learning to play Backgammon

Immediate reward
+100 win
-100 loose
0 for all other actions/states

Trained by playing 1.5 million games against 
itself (Tesauro [1995])
Now approximately equal to the best human 
player
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Reinforcement Learning Problem

Agent

Environment

state st

st+1

rt+1

reward rt action at

s0
a0

r1
s1

a1

r2
s2

a2

r3

Goal: Learn to choose actions at that maximize future rewards   
r1+γ r2+ γ2 r3+…, where 0<γ<1 is a discount factor

s3



7

Models of Optimal Behavior:

Agent tries to maximize one of the following:

finite-horizon Model:

infinite-horizon 
discounted model:

average-reward model:
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Example 1: Slot Machine

State: configuration of slots
Action: stopping time
Reward: $$$

Problem: Find π:S→A that
maximizes R



9

Example 2: Tic Tac Toe

State: board
Action: next move
Reward: 1 for win, -1 for 
loss, 0 for draw

Problem: Find π:S→A that
maximizes R
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Example 3: Inverted 
Pendulum

State: x(t),x’(t), q(t), q’(t)
Action: Force F 

(bang bang)
Reward: 1 for any step where 
pole balanced

Problem: Find π:S→A that
maximizes R
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Example 4: Mobile Robot

State: location of robot, 
people
Action: motion
Reward: number of happy 
faces

Problem: Find π:S→A that
maximizes R



12

Common Features of RL 
Problems

Temporal Credit Assignment
Exploration/Exploitation
Planning and Acting under Uncertainty
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The Principle of Optimality

“an optimal set of decisions has the property that 
whatever the first decision is, the remaining 
decisions must be optimal w/ respect to the 
outcome…of the first decision.” –R. Bellman
“if you don’t do the best you have with what you 
happen to have got, you will never do the best you 
might have done with what you should have had.”
–R. Aris
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Example

100☺
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Example

100☺
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Example

100☺

99



17

Example

100☺

99
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Example

100☺

99

98
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Example

91 9392 978988

9291 9493 96959089

9190 93 95948988

92 93 988889

9594 9796 97989392

94 95 989991

93 94 99100☺90

9493 9695 96979291
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Markov Decision Processes

s2

s3

s4
s5

s1

0.7

0.3

0.9
0.1

0.3

0.3
0.4

0.99

0.1

0.2

0.8 r=−10

r=20

r=0

r=1

r=0
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Markov Decision Process (MDP)

Finite set of states S
Finite set of actions A
At each time step the agent observes state st∈S and 
chooses action at∈A(st)
Then receives immediate reward rt+1

And state changes to st+1

Markov assumption : st+1=δ(st,at) and rt+1=r(st,at)
Next reward and state only depend on current state st
and action at

Functions δ(st,at) and r(st,at) may be non-deterministic
Functions δ(st,at) and r(st,at) not necessarily known to 
agent
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What’s Different from HMMs?

Controllable Markov chain (HMMs are not 
controllable) 
Equally, an FSM with probabilistic transitions 
and full state output
Objective: Learn a policy (HMMs learn 
models)
State fully observable (state in HMMs is only 
partially observable)
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Why MDPs?

Natural model of physical, apparently random 
phenomenom
MDP’s obey the principle of optimality (under suitable 
restrictions on the reward function)

The Bellman equation: (fixed policy)

The Bellman equation: 

There is a (almost unique) optimal deterministic
mapping from states to actions

)]','([E  r(s)  a)Q(s, as, asQ+=

*)],'([E max  r(s)  (s)Q *
s*a

* asQ+=
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Learning Task
Execute actions in the environment, observe results and

Learn a policy πt(s,a) : S → A from states st∈S to actions 
at∈A that maximizes the expected reward : E[rt+γ rt+1+ γ2

rt+2+…] from any starting state st

0<γ<1 is the discount factor for future rewards 
Target function is πt(s,a) : S → A 
But there are no direct training examples of the form <s,a>
Training examples are of the form <<s,a>,r>
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State Value Function

Consider deterministic environments, namely δ(s,a) and 
r(s,a) are deterministic functions of s and a.

For each policy π(s,a) : S → A the agent might adopt 
we define an evaluation function:
Vπ(s)= rt+γ rt+1+ γ2 rt+2+…= Σi=0 rt+i γi

where rt, rt+1,… are generated by following the policy π
from start state s

Task: Learn the optimal policy π* that maximizes Vπ(s) 

π* = argmaxπ Vπ(s) ,∀s
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Action Value Function

State value function denotes the reward for starting 
in state s and following policy π.

Vπ(s)= rt+γ rt+1+ γ2 rt+2+…= Σi=0 rt+i γi

Action value function denotes the reward for 
starting in state s, taking action a and following 
policy π afterwards.

Qπ(s,a)= r(s,a) + γ rt+1+ γ2 rt+2+…= r(s,a) + γ Vπ(δ(s,a))
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Predicting the Value of a State
Key idea: Learn a Value Function

Q:SxA→ℜ
such that

Q(s,a) = 

A mapping that predicts what each state s is worth, given we 
take action a (Sum of future rewards.)

Why: Duality between value functions and policies
By knowing the optimal policy, we can calculate the value of 
each state
By knowing the optimal value-function, we can calculate the 
optimal move

∑ t
t rγ
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Bellman Equation (Deterministic 
Case)

Vπ(s) = rt+γ rt+1+ γ2 rt+2+…

= Σa π(s,a) (r(s,a) + + γ Vπ(δ(s,a)))

s

Vπ(s)

s’’s’’=δ(s,a2)

Vπ(s’’)
r=r(s,a2)

s’
s’=δ(s,a1)

Vπ(s’)
r=r(s,a1)

π(s,a2)

π(s,a1)

Set of |s| linear equations, solve it directly or by policy evaluation.
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Example

G: terminal state, upon entering G agent obtains a
reward of +100, remains in G forever and obtains no 
further rewards

G
+100

+100

s3s2

s6

Compute Vπ(s) for equil-probable policy π(s,a)=1/|a|
Vπ(s3) = ½ γ Vπ(s2) + ½ (100 + γ Vπ(s6)) 
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Iterative Policy Evaluation
Instead of solving the Bellman equation directly 
one can use iterative policy evaluation by using
the Bellman equation as an update rule. 

Vk+1
π(s) = Σa π(s,a) (r(s,a) + γ Vk

π(δ(s,a)))
The sequence Vk

π is guaranteed to converge to Vπ

Vπ
0=0Vπ

0=0Vπ
0=0

Vπ
0=0 Vπ

0=0 Vπ
0=0

Vπ
1=0Vπ

1=33Vπ
1=0

Vπ
1=0 Vπ

1=0 Vπ
1=50

Vπ
2=0Vπ

2=33Vπ
2=15

Vπ
2=0 Vπ

2=25 Vπ
2=50

Vπ
3=0Vπ

3=45Vπ
3=15

Vπ
3=18 Vπ

3=25 Vπ
3=61

Vπ
4=0Vπ

4=45Vπ
4=29

Vπ
4=18 Vπ

4=38 Vπ
4=61

Vπ
50=0Vπ

50=66Vπ
50=52

Vπ
50=49 Vπ

50=57 Vπ
50=76

γ=0.9
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Bellman Equation (Deterministic 
Case)

Qπ(s,a) = r(s,a) + γ Σa’ π(δ(s,a),a’) Qπ(δ(s,a),a’)

s
Qπ(s,a)

s’
s’=δ(s,a)

Qπ(δ(s,a),a3)

r=r(s,a)
Qπ(δ(s,a),a2)

Qπ(δ(s,a),a1)
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Iterative Policy Evaluation
Bellman equation as an update rule for action-value
function:

Qk+1
π(s,a) = r(s,a) + γ Σa’ π(δ(s,a),a’) Qk

π(δ(s,a),a’)

γ=0.9
0

G

0

0

0

00

0

0

0

0

0 00

0

G

100

100

0

00

0

0

0

0

0 00

0

G

100

100

0

450

0

0

30

0

0 300

0

G

100

100

23

4523

0

0

30

13

13 3023

0

G

100

100

23

5523

16

16

41

13

13 4123

0

G

100

100

34

5534

16

16

41

26

26 4134

0

G

100

100

52

6952

44

44

60

47

47 6052
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Optimal Value Functions

V*(s) = maxπ Vπ(s)
Q*(s,a) = maxπ Qπ(s,a)

Bellman optimality equations
V∗(s) = maxa Q*(s,a)

= maxa ( r(s,a) + γ V∗(δ(s,a)) )
Q∗(s,a) = r(s,a) + V*(δ(s,a)))

= r(s,a) + γ maxa’ Q
∗(δ(s,a),a’)
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Policy Improvement

Suppose we have determined the value function Vπ

for an arbitrary deterministic policy π. 
For some state s we would like to know if it is better 
to choose an action a≠π(s).
Select a and follow the existing policy π afterwards 
gives us reward Qπ(s,a)
If Qπ(s,a) > Vπ then a is obviously better than π(s)
Therefore choose new policy π’ as 
π’(s)=argmaxa Qπ(s,a) = argmaxa r(s,a)+γ Vπ(δ(s,a)) 



35

Example

π’(s)=argmaxa r(s,a)+γ Vπ(δ(s,a)) 

Vπ=0Vπ=71Vπ=63

Vπ=56 Vπ=61 Vπ=78

r=100

r=100

π(s,a)=1/|a|

Vπ’=
0

Vπ’=
100

Vπ’=
90

Vπ’=
81

Vπ’=
90

Vπ’=
100
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Example
π’(s)=argmaxa Qπ(s,a) 

0

G

100

100

52

6952

44

44

60

47

47 6052
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Generalized Policy Iteration

Intertwine policy evaluation with policy improvement

π0 → Vπ0→ π1 → Vπ1→ π2 → Vπ2→ … → π* → Vπ*E       I       E       I      E       I   … I       E

π V

evaluation

improvement

V → Vπ

π→greedy(V)
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Value Iteration (Q-Learning)

Idea: do not wait for policy evaluation to 
converge, but improve policy after each 
iteration. 
Vk+1

π(s) = maxa (r(s,a) + γ Vk
π(δ(s,a)))

or
Qk+1

π(s,a) = r(s,a) + γ maxa’ Qk
π(δ(s,a),a’)

Stop when ∀s |Vk+1
π(s)- Vk

π(s)| < ε
or ∀s,a |Qk+1

π(s,a)- Qk
π(s,a)| < ε
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Non-Deterministic Case

State transition function δ(s,a) no longer 
deterministic but probabilistic given by

P(s’|s,a) = Pr{st+1=s’|st=s, at=a}
Transition probability that given a current state s 

and action a the next state is s’.
Reward function r(s,a) no longer deterministic 
but probabilistic given by

R(s’,s,a) = E{rt+1|st=s, at=a, st+1=s’}
P(s’|s,a) and R(s’,s,a) completely specify MDP.
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Bellman Equation (Non-
Deterministic Case)

Qπ(s,a)= Σs’ P(s’|s,a) [R(s’,s,a)+ γ Vπ(s’)]

Vπ(s)= Σa π(s,a) Σs’ P(s’|s,a) [R(s’,s,a) + γ Vπ(s’)]

Qπ(s,a)= Σs’ P(s’|s,a) [R(s’,s,a)+ γ Σa’ π(s’,a’) Qπ(s’,a’)]
Bellman optimality equations:

V∗(s)= maxa Σs’ P(s’|s,a) [R(s’,s,a) + γ V∗(s’)]

Q∗(s,a)= Σs’ P(s’|s,a) [R(s’,s,a)+ γ maxa’ Q
∗(s’,a’)]
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Value Iteration (Q-Learning)

Vk+1
π(s) = maxa Σs’ P(s’|s,a) [R(s’,s,a) + γ Vk

π (s’)]
or

Qk+1
π(s,a) = Σs’ P(s’|s,a) [R(s’,s,a)+ γ maxa’ Qk

π(s’,a’)]

Stop when ∀s |Vk+1
π(s)- Vk

π(s)| < ε
or ∀s,a |Qk+1

π(s,a)- Qk
π(s,a)| < ε
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Example
P(s’|s,a)=

0
P(s’|s,a)=

0
P(s’|s,a)=
(1-p)/3

P(s’|s,a)=
(1-p)/3 s P(s’|s,a)=

p+(1-p)/3

Now assume that actions a are non-
deterministic, with probability p agent moves 
to the correct square indicated by a, with 
probability (1-p) agent moves to a random 
neighboring square.
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Example
V∗=
0

V∗=
100

V*=
90

V∗=
81

V∗=
90

V∗=
100

Deterministic optimal
value function

Non-deterministic optimal
value function p=0.5

V∗=
0

V∗=
90

V*=
77

V∗=
71

V∗=
80

V∗=
93
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Reinforcement Learning

What if the transition probabilities P(s’|s,a) and 
reward function R(s’,s,a) are unknown?
Can we still learn V(s), Q(s,a) and identify and 
optimal policy π(s,a)? 
The answer is yes. Consider the observed rewards 
rt and state transitions st+1as training samples 
drawn from the true underlying probability 
functions R(s’,s,a) and P(s’|s,a).
Use approximate state V(s) and action value Q(s,a) 
functions



45

Model Free Methods
Models of the environment:
T:  S x  A ∏ ( S) and R : S x A  R

Do we know them?    Do we have to know 
them?

Monte Carlo Methods
Adaptive Heuristic Critic
Q Learning
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Monte Carlo Methods 

Idea: 
Hold statistics about rewards for each state
Take the average
This is the V(s)

Based only on experience ☺
Assumes episodic tasks    

(Experience is divided into episodes and all episodes will 
terminate regardless of the actions selected.) 

Incremental in episode-by-episode sense not step-by-step sense. 
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Problem:  Unvisited <s, a> pairs
(problem of maintaining exploration)

For every <s, a> make sure that:
P(<s, a> selected as a start state and action) >0 

(Assumption of exploring starts ) 
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Monte Carlo Method
Initialize:

π ← policy to be evaluated
V(s) ← an arbitrary state-value function
Return(s) ← an empty list, for all s∈S

Repeat forever
Generate an episode using π
For each state s appearing in the episode:

R ← return following the first occurence of s
Append R to Returns(s)
V(s) ← average(Returns(s))
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Monte Carlo Method

V(st) ← V(st) + α [Rt-V(st)]
where Rt = rt+1+ γ rt+2 + γ2 rt+3+…
is the observed reward after time t and α is a 

constant step-size parameter 

Vπ=0Vπ=60Vπ=30

Vπ=30 Vπ=40 Vπ=70

V(st) ← 30 + 0.1 [0 + 0.9*0 +0.92 *100 - 30] = 35.1 
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ADAPTIVE HEURISTIC 
CRITIC & TD(λ)

How the AHC learns, TD(0) algorithm:

AHC : TD Algorithm
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Q LEARNING

Q values in Value Iteration:

But we don’t know and

Instead use the following :

Decayed α properly?    Q values will converge. (Singh 1994)
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Q-LEARNING CRITICS:

Simpler than AHC learning
Q-Learning is exploration sensitive
Analog to value iteration in MDP
Most popular Model free learning algorithm
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Temporal Difference Learning

Monte-Carlo:
V(st) ← V(st) + α [Rt-V(st)]
target for V(s) : E {Rt | st=s}

Must wait until the end of the episode to update V
Temporal Difference (TD):

V(st) ← V(st) + α [rt+1 + γ V(st+1)- V(st)]
target for V(s) : E {rt+1 + γ V(st+1) | st=s}

TD method is bootstrapping by using the existing 
estimate of the next state V(st+1) for updating V(st)
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TD(0) : Policy Evaluation
Initialize:

π ← policy to be evaluated
V(s) ← an arbitrary state-value function

Repeat for each episode
Initialize s
Repeat for each step of episode

a ← action given by π for s
Take action a, observe reward r, and next state s’
V(s) ← V(st) + α [r + γ V(s’)- V(s)]
s ← s’

Until s is terminal
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TD(0): Policy Iteration

Q(st,at) ← Q(st,at) + α [rt+1 + γ Q(st+1,at+1)- Q(st,at)]

st st+1

rt+1

st,at

st+2

rt+2

st+1,at+1 st+2,at+2

The update rule uses a quintuple of events (st,at,rt+1,st+1,at+1),
therefore called SARSA.

Problem: Unlike in the deterministic case we can not choose
A completely greedy policy π(s)=maxa Q(s,a), as due to the 
unknown transition and reward functions δ(s,a) and r(s,a) we 
can not be sure if another action might eventually turn out to 
be better.  
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ε-greedy policy
Soft policy: π(s,a) > 0 for all s∈S, a∈A(s)

Non-zero probability off choosing every possible action
ε-greedy policy: Most of the time with probability (1-ε) 
follow the optimal policy 

π(s) = maxa Q(s,a)
but with probability e pick a random action:
π(s,a) ≥ ε/|A(s)|
Let ε→0 go to zero as t→∞ for example ε=1/t so that
ε-greedy policy converges to the optimal deterministic
policy
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SARSA Policy Iteration

Initialize Q(s,a) arbitrarily:
Repeat for each episode

Initialize s

Choose a from using ε-greedy policy derived from Q
Repeat for each step of episode

Take action a, observe reward r, and next state s’
Q(s,a) ← Q(s,a) + α [r + γ Q(s’,a’)- Q(s,a)]
s ← s’, a ← a’

Until s is terminal
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Q-Learning (Off-Policy TD)

Approximates the optimal value functions V*(s) or 
Q*(s,a) independent of the policy being followed.
The policy determines which state-action pairs are 
visited and updated

Q(st,at) ← Q(st,at) +α [rt+1 + γ maxa’ Q(st+1,a’)-Q(st,at)]
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Q-Learning Off-Policy Iteration

Initialize Q(s,a) arbitrarily:
Repeat for each episode

Initialize s

Choose a from s using ε-greedy policy derived from Q
Repeat for each step of episode

Take action a, observe reward r, and next state s’
Q(s,a) ← Q(s,a) + α [r + γ maxa’Q(s’,a’)- Q(s,a)]
s ← s’

Until s is terminal



60

TD versus Monte-Carlo

So far TD uses one-step look-ahead but why not use 2-steps 
or n-steps look-ahead to update Q(s,a).
2-step look-ahead

Q(st,at) ← Q(st,at) +α [rt+1 + γ rt+2 +γ2 Q(st+2,at+2)-Q(st,at)]
N-step look-ahead 

Q(st,at) ← Q(st,at) +α [rt+1 + γ rt+2 + … + γn-1 rt+n + γn

Q(st+n,at+n)-Q(st,at)]
Monte-Carlo method 

Q(st,at) ← Q(st,at) +α [rt+1 + γ rt+2 + … + γN-1 rt+N -Q(st,at)]
(compute total reward RT at the end of the episode)
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Temporal Difference Learning
Drawback of one-step look-ahead:

Reward is only propagated back to the successor state 
(takes long time to finally propagate to the start state)

st st+1

r=0
st+2

r=0
sT-2

r=0
sT

r=100
sT-1…

V(s)=0 V(s)=0 V(s)=0 V(s)=0 V(s)=0
Initial V:

After first epsiode:
V(s)=0 V(s)=0 V(s)=0 V(s)=0 V(s)=α*100

After second epsiode:
V(s)=0 V(s)=0 V(s)=0 V(s)=α∗γ*100 V(s)=α*100+..
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Monte-Carlo Method

Drawback of Monte-Carlo method
Learning only takes place after an episode terminated
Performs a random walk until goal state is discovered
for the first time as all state-action values seem equal
It might take long time to find the goal state by 
random walk
TD-learning actively explores state space if each
action receives a small default penalty 
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N-Step Return

Idea: blend TD learning with Monte-Carlo method
Define:
Rt

(1) = rt+1 + γ Vt(st+1)
Rt

(2) = rt+1 + γ rt+2 +γ2 Vt(st+2)
…
Rt

(n) = rt+1 + γ rt+2 + … + γn-1rt+n + γnVt(st+n)
The quantity Rt

(n) is called the n-step return at 
time t. 
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TD(λ)
n-step backup : Vt(st) ← Vt(st) + α [Rt

(n)-Vt(st)]
TD(λ) : use average of n-step returns for backup

Rt
λ= (1-λ) Σn=1

∞ λn-1 Rt
(n) 

Rt
λ= (1-λ) Σn=1

T-t-1 λn-1 Rt
(n)   + λT-t-1 Rt  

(if sT is a terminal state)
The weight of the n-step return decreases with a 

factor of λ
TD(0): one-step temporal difference method
TD(1) : Monte-Carlo method 
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Eligibility Traces
Practical implementation of TD(λ):
With each state-action pair associate an eligibility trace et(s,a)
On each step, the eligibility trace for all state-action pairs 

decays by a factor γλ and the eligibility trace for the one 
state and action visited on the step is incremented by 1.

et(s,a) = γ λ et-1(s,a) + 1 if s=st and a=at

= γ λ et-1(s,a) otherwise
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On-line TD(λ)
Initialize Q(s,a) arbitrarily and e(s,a)=0 for all s,a:
Repeat for each episode

Initialize s,a
Repeat for each step of episode

Take action a, observe r, s’
Choose a’ from s’ using policy derived from Q (ε-greedy)
δ ← r + γ Q(s’,a’) – Q(s,a)
e(s,a) ← e(s,a) +1 

For all s,a:
Q(s,a) ← Q(s,a)+ α δ e(s,a)
e(s,a) ← γ λ e(s,a)
s ← s’, a ← a’

Until s is terminal
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Function Approximation

So far we assumed that the action value function 
Q(s,a) is represented as a table.
Limited to problems with a small number of states 
and actions
For large state spaces a table based representation 
requires large memory and large data sets to fill 
them accurately
Generalization: Use any supervised learning 
algorithm to estimate Q(s,a) from a limited set of 
action value pairs

Neural Networks (Neuro-Dynamic Programming)
Linear Regression
Nearest Neighbors
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Function Approximation

Minimize the mean-squared error between 
training examples Qt(st,,at) and the true value 
function Qπ(s,a)

Σs∈S P(s) [Qπ(s,a)- Qt(st,,at)]2

Notice that during policy iteration P(s) and 
Qπ(s,a) change over time
Parameterize Qπ(s,a) by a vector θ=(θ1,…, θn)
for example weights in a feed-forward neural 
network
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Stochastic Gradient Descent

Use gradient descent to adjust the parameter vector
θ in the direction that reduces the error for the 
current example

θt+1 = θt + α [Qπ(st,at) – Qt(st,at)]∇θt Qt(st,at)
The target output qt of the t-th training example is 
not the true value of QP but some
approximation of it.

θt+1 = θt + α [vt – Qt(st,at)]∇θt Qt(st,at)
Still converges to a local optimum if E{vt}=Qπ(st,at)
if a→0 for t→∞


