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Agenda

#Motor Control
# Specific Problems of Motor Control
#Reinforcement Learning (RL)

#Survey of Advanced RL Techniques
#EXisting Results
#0pen Research Questions
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What i1s Motor Control?

#Controlling the Movement of Objects

#Biological: Understanding how the brain

controls the movement of limbs

#Engineering: Control of Robots
(especially humanoid)

#1n this talk: Emphasis on Robot Control
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Definition: Motor Control?!

L

# Control of a nonlinear, unreliable System

# Monitoring of States with slow, low-quality
Sensors

# Selection of appropriate Actions
# Translation of Sensory Input to Motor Output
# Monitoring of Movement to ensure Accuracy

1 R.C. Miall: Handbook of Brain Theory and Neural Networks, 2nd Ed. (2003) 4
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Motor Learning

# Adaptive Control
= Monitoring Performance of Controller
= Adapting the Behaviour of the Controller

= To achieve better Performance and compensate
gradual Changes in the Environment

# Formulation:
m U= TC(X, L, OL)
= U ... Coninuous control vector
X ... Continuous state vector
m t... Time
o ... Problem Specific Parameters
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Interesting Learning Tasks

# Unsupervised Motor Learning
= Learning Movements from Experience

# Supervised Motor Learning
= Learning from Demonstration

# Combined Supervised and Unsupervised
Learning

# Not covered: Analytical and Heuristic
Solutions

= Dynamical Systems
= Fuzzy Controllers
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Agenda

.
# Specific Problems of Motor Control
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Non-linear Dynamics

# Dynamics of Motor Control Problems

= Systems of Non-linear Differential Equations in
high-dimensional State Space

# Instability of Solutions

# Analytical Solution therefore is very difficult
(if not impossible) to achieve

# Learning is necessary!




Degrees of Freedom
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4 Every joint can be controlled
separately

# Huge, continuous Action Space
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Online Adaptation

#Unknown Environments
s Difficult Terrain, etc.

#Noisy Sensors and Actuators

= Commanded Force is not always the Acutal Force

#Reflex Response to strong Pertubations

= Avoid damage to Robots

11
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Learning Time

# Learning on real Robots is very time-
consuming

# Many long training runs can damage the
Robot

# Simulations cannot fully overcome these
problems

» Lack of physical Realism

# Learning ,from Scratch” takes too long

12
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Other Issues

#Continuous Time, State and Actions
#Hierarchy of Behaviours
#Coordination of Movements

#Learning of World Models
#And many more...

13




Main Goals of this Talk

N

#®Present possible Solutions for
= Learning in Continuous Environments
= Reducing Learning Time
= Online Adaptation
= Incorporating A-priori Knowledge

#Showing that Reinforcement Learning IS
a suitable Tool for Motor Learning

14
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#Reinforcement Learning (RL)
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Reinforcement Learning (RL)

# Learning through Interaction with
Environment

# Agent Is In State s

# Agent executes Action a

# Agent receives a Reward r(s,a) from the
environment

#® Goal: Maximize /ong-term discounted Reward

16




Basic RL Definitions
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#Value Function: V7(s)= E{Zykmk+1
k=0

S, :s}

#Action-Value Function (Q-Function):

Qﬁ(S,a) = E;r|:z7/krt+k+l St = Saa‘[ = a:|
k=0

#Bellman — Equation:

Q'(s,a)= E[rt+1 +7-m3xQ*(st+l,a')

S =S, a, =a:|

17




Value-Based RL

N

# Policy lteration:
= Start with random policy =,
= Estimate Value-Function of m;

= Improve &, 2 m;,, by making it greedy w.r.t. to the
learned value function

= Exploration: Try out random actions to explore the
state-space

= Repeat until Convergence

# Learning Algorithms:
= Q-Learning (off-policy), SARSA (on-policy)
= Actor-Critic Methods, etc. 18
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Temporal Difference Learning

®TDerror: o, =1, +y-V(S.,)-V(S,)
# Evaluation of Action:

m Positive TD-Error: Reinforce Action
= Negative TD-Error: Punish Action

# TD()\): update value of previous action with
future rewards (TD-errors)

# Eligibility Traces: Decay exponentially with A
. e(s) <« y-A-e(s)

19
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Problems of Standard-RL

#Markov Property violated
#Discrete States, Actions and Time

#Learning from Scratch
#(Too) Many Training Episodes needed
#Convergence

20
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Agenda

@
2

@
®Survey of Advanced RL Techniques
@ EXisting Results

®
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Structure of This Chapter

N

# Main Problems of
Motor Control

# Possible RL
Solutions

# Successful
Applications

22




Problem 1

Learning in Continuous
Environments

23




Standard Approaches for

Continuous State Spaces

N

#Discretization of State Space

#Function Approximation
s Linear Functions
m Artificial Neural Networks, etc.

= Coarse Coding, Tile Codings, RBF, ...

24
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Function Approximation in RL

# Represent State by a finite number of
Features (Observations)

# Represent Q-Function as a parameterized
function of these features

= (Parameter-Vector 0)

# Learn optimal parameter-vector 6™ with
Gradient Descent Optimization at each time
step

25




Problems of Value Function
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Approximation

# No Convergence Proofs
= Exception: Linear Approximators

# Instabilities in Approximation
= Forgetting” of Policies

# Very high Learning Time

# Still it works in many Environments
s TD-Gammon (Neural Network Approximator)

26




Continuous TD-Learning?

N

& Continuous State x, Continuous Actions u
@ System Dynamics: X= f(X,u)

# Policy © produces trajectory x(t)
Vt >t X = f(X,7(X))

X(t)) = X,

# Value Function: s
~(t-t

V7 (X,) = jt : e © r(x(t), z(x(t)))dt

0

1 K. Doya: Reinforcement Learning in Continuous Time and Space, Neural Computation,

12(1), 219-245 (2000) .
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Optimality Principle

# Hamilton-Jacobi-Bellman (HJB) Equation

Ly (x(t) = ma{r(x(t),u(t)) +%: f (X(t),u(t))}

; u(t)eu

= Optimal Policy must satisfy this equation

# Approximate Value Function by Parameter
Vector 0

= Find optimal 0

28




Continuous TD-Error
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# Self-Consistency Condition:
V (x(®) =V () =%v ) —r(t)

# Continuous TD-Error:

5(t) = r(t)-%v (t)+V (1)

# Learning: Adjust Prediction of V to decrease
TD-Error (inconsistency)

29
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Continuous TD()L) - Algorithm

@ Integration of Ordinary Diff. Equation
0=1-5(t)-e(t)

1

6(t) = —(—je(t) , Y X(),0)

00

K

X = f (X, 7(X))

= 1 ... Learning Rate
mk...0<kx<r1, Related to A

30
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Policy Improvement

# Exploration: Episodes start from random
Initial state

# Actor-Critic:

= Approximate Policy through another Parameter
Vector 64

= Use TD-Error for Update of Policy

# Choose Greedy Action w.r.t. V(x, 0)
= Continuous Optimization Problem
= [Doya] describes more approaches

31




Relation to Discrete-Time RL

N

#Implementation with Finite Time Step

#Equivalent Algorithms can be found to
= Residual Gradient
= TD(0)
= TD())

32




Problems with this Method

N

#Convergence Is not guaranteed
= Only for Discretized State-Space
= Not with Function Approximation

# Instability of Policies

#®A lot of Training Data is required

33
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Experiments (1)

# Pendulum Up-Swing
with limited Torque

= Swing Pendulum to

upright position
= Not enough torque
to directly reach goal

m Five times faster
than discrete TD

O

34
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Experiments (2)

# Cart — Pole Swing-Up
= Similar to Pole-Balancing Task

= Pole has to be swung up from
arbitrary angle and balanced

= Using Continuous Eligibility
Traces makes learning three-
times faster than pure Actor-
Critic algorithm

35




/ Problem 2

Reduction of Learning Time

36




Presented Here

N

# Hierarchical Reinforcement Learning
= Module-based RL

# Model-Based Reinforcement Learning
- Dyna-Q
= Prioritized Sweeping

# Incorporation of prior Knowledge
= Presented separately

37
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1. Hierarchical RL

# Divide and Conquer Principle
= Bring Structure into Learning Task
= Movement Primitives

# Many Standard Techniques exist
= SMDP Options [Sutton]
= Feudal Learning [Dayan]
= MAXQ [Dietterich]
= Hierarchy of Abstract Machines [Parr]
= Module-based RL [Kalmar]

38




Module-based RL

N
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# Behaviour-based Robotics
= Multiple Controllers to achieve Sub-Goals

= Gating / Switching Function decides when to
activate which Behaviour

= Simplifies Design of Controllers

# Module-based Reinforcement Learning?!
= Learn Switching of Behaviours via RL
= Behaviours can be learned or hard-coded

LKalmar, Szepeszvari, Ldrincz: Module-based RL: Experiments with a real
robot. Machine Learning 31, 1998




Module-based RL
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Phases of
Robot Programiming

Qualitative World Model :
[Suhtask A Subtask B P Subtask O -w Planning

Cuantitative World Model

fop. Cond A} [Op.Cond B} [Op.Cond. C) Design
Emm'nllerﬂ_.‘l l'l_:ﬂl'l'[l'ﬂ"ﬂ' B J l{_'Jmm'ﬂIIerCJ

Learning

State Space

# Planning Step introduces prior Knowledge

# Operation Conditions: When can modules be invoked?
40




Module-based RL
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Reinforcement Learning

)

Feature Yector
Fes

Op. Cond. EI Op. Cond. a

| ;\Lmllla% I-'mlumﬂ |-Cuntl‘4:r||ﬂl' A I g tun[ml ler B

Environment _>

Remforcement

|
Op. Cond. {?I
Controller C

# RL learns Switching Function to resolve
Ambiguities
= Inverse Approach (learning Modules) also possible

41
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Experiments and Results

#®Complex Planning Task with Khepera
m RL starts from scratch

s Module-based

crafted control

s Module-based
techniques

RL comes close to hand-
er after 50 Trials

RL outperforms other RL

42




Other Hierarchical Approaches

N

# Options or Macro Actions

# MAXQ:Policies may recursively invoke sub-
policies (or primitive actions)

# Hierarchy of Abstract Machines:
= Limit the space of possible policies
= Set of finite-state machines
= Machines may call each other recursively

43
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2. Model-based RL

# Simultaneous Learning of a Policy and a
World Model to speed-up Learning

#Learning of Transition Function in MDP

#Allows Planning during Learning

@ Approaches:
s Dyna-Q
= Prioritized Sweeping

44




Planning and Learning

N
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# Experience improves

both Policy and value/policy
Model \\
acting
planning direct
RL
# Indirect RL:
mudel experience

= Improvement of
Model may also mndel
Improve the Policy learning

45
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Dyna-Q

# Execute @ain s

# Observe &, r
= Model(s, a) = (s, )

= (deterministic World)  uedate

# Make N offline
update steps to
Improve Q-function

7N

Pﬂﬁcyfualue functi?ns

[ Environment ]

planning update

search
control

Model

46




Prioritized Sweeping

N

# Planning is more useful for states where a big
change in the Q-Value is expected

m €.g. predecessor states to goal states

# Keep a Priority Queue of State-Action Pairs,
sorted by the predicted TD-Error
= Update Q-Value of highest-priority Pair

= Insert all predecessor pairs into Queue, according
to new expected TD-Error

# Problem: Mostly suitable for discrete Worlds
4

7




Pros and Cons of Model-based RL

N

# Dyna-Q and Prioritized Sweeping converge
much faster (in Toy Tasks)

# Extension to Stochastic Worlds is possible

# Extension to Continuous Worlds is difficult for
Prioritized Sweeping
s NO available results

# Not necessary in well-known Environments
» Error-free Planning and Heuristic Search 48




/ Problem 3

Online Adaptation

49




Problem Description

N

# Environment and/or Robot Characteristics are
only partially known

= Unreliable Models for Prediction (Inverse
Kinematics and Dynamics)

# Value-based RL algorithms typically need a lot
of training to adapt
= Changing a Value may not immediately change
the policy
= Backup for previous actions, no change for future
actions

= Greedy Policies may change very abruptly (no
smooth policy updates) 50




Direct Reinforcement Learning
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# Direct Learning of Policy without Learning of
Value Functions (a.k.a. Policy Search, Policy
Gradient RL)

# Policy Is parameterized

# Policy Gradient RL:

» Gradient Ascent Optimization of Parameter Vector
representing the Policy

= Optimization of Average Reward

51
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Definitions

# Definitions in POMDP!:
s Statei € {1, ..., n}
s Observation y=v(i) € {1, ..., M}
= Controlsu € {1, ..., N}

= State Transition Matrix P(u) = [p;(u)]

m Stochastic, differentiable Policy u(0,y)

= 1 generates Markov Chain with Transition Matrix
P(0) = [p;(6)]

= P;i(6) = E,pLy] Epo.yy Pij(U)

= Stationary distribution n: n7(0) P(6) = ="(0)

1 POMDP = Partially Observeable Markov Decision Process 52




N

Policy Gradient RL!

#Policy Is parameterized by 6

#0Optimization of Average

Reward

() = gggoﬁE{irai)

= Optimizing long-term average Reward Is
equivalent to optimizing discounted reward

#Gradient Ascent on n(6)

IBaxter, Bartlett. Direct Gradient-Based Reinforcement Learning (1999)

53




Gradient Ascent Algorithm

N

# Compute Gradient Vn(6) w.r.t. 6
#®#Take astep 6 € 6 + v Vn(0)

Vn = ﬂTVP[| —P+erx' r r

#® Problems:

= Stationary Distribution = of MDP and Transition
Probabilities usually unknown

= Inversion of huge Matrix
# Approximation of Gradient is necessary

54
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Gradient Approximation

_1: _1: T. .
Vn—lﬂlg}vﬂn—lﬂlg}ﬂ VPV,

& VB ... Discounted State-Values

# [ <[0, 1) ... Discount Factor, Bias-Variance
Trade-Off

# B close to 1:
= good Approximation of Gradient
= Large Variance in Estimates of Vn
= Must be set by User in advance

55




GPOMDP Algorithm

S¥

# Estimate Gradient from a single sample
Path of the POMDP

1. zo = 0, A=0

2. FORALL observations y,, controls u, and subsequent
rewards r(i,,,)

3. :th_l_vp'u(e’yt)

1,0,v,)
4. p =4 +§[r t+1 t+l_At]

END

56
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Explanation of GPOMDP

@A, computes average of r,, -z,
= Proof in [Baxter, Bartlett]

@®lim,,, A= Vgn
= Convergence to Gradient Estimate

= Longer GPOMDP runs needed for exact
estimation (Variance depends on f3)

S7
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Experimental Results

# Comparing real and
estimated Gradient

n3state MOP g | [EEE]
# Small 3 E; m? E\QQ:\-\
= Greater bias ; : ;E&t;
@ Large 3 g
= Later convergence 0-'3"3'11_ S 1':":'DT1'3"3“3"I'1'I'DEIGEI1e+|:|E1.3; ,

58




GSEARCH

N

# Estimation of Gradient with GPOMDRP is
computationally expensive

= Fixed search length is therefore inefficient

Line-search

fixed

&
< L

V.

# Better: Do a line search in the direction of the
Gradient Estimate: GSEARCH

59
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|ldea of GSEARCH

#Bracket the Maximum in direction 6~
between two points 0,, 6,

= GRAD(8,)- 6*>0, GRAD(8,) )- 6*<0

= Maximum is in [0, 6,]
s Quadratic Interpolation to find Maximum

60




CONJPOMDP

N

#®Policy-Gradient Algorithm
s Uses GPOMDP for Gradient Estimation

m Uses GSEARCH for finding Maximum in
Gradient Direction

= Continues until Changes fall below
threshold

s [rains Parameters for Controllers

= Involves many Simulated lterations of
Markov Chain for Gradient Estimations

61




OLPOMDP

N

#Directly adjust Parameter Vector during
Running Time

#Same Algorithm as GPOMDP, only
actions are directly executed and 0 is
Immediately updated

#NO0 convergence Results yet

62
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# Mountainous Puck
World

s Similar to Mountain Car

# Navigate a Puck out of
a valley to a plateau

= Not enough power to
directly climb the hill

4 Train Neural-Network
controllers

# CONJPOMDP
= 1 Mio. Runs for GPOMDP

Average Reward
_ = M) L oo @ = m
- | | - = = | - = = | - | -

Experiments and Results

IEANE TTTH-}-:J['H'H'}H}H
] 1L
J'r"_
:xff
2e+07 de+07 Get7 Bet07

Iterations

1e+08
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VAPS [Baird, Moorel}

#® Value And Policy Search

# Combination of both Algorithm types
= Allows to define Error function e, dependent on

parameter vector 0

= e determines Update rule (e.g. SARSA, Q-learning,
REINFORCE (policy-search)...)

# Gradient Ascent Optimization

s Guaranteed (local) Convergence for all function
approximators

1 Baird, Moore: Gradient Descent for General RL (1999) 64
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Policy Gradient Theorem?

# Theorem:

If the value-function parameterization is
compatible with the policy parameterization, then
the true policy gradient can be estimated, the

variance of the estimation can be controlled by a
reinforcement baseline, and policy iteration
converges to a locally optimal policy.

# Significance:

= Shows first convergence proof for policy iteration
with function approximation.

1 Sutton,McAllester, Singh, Mansour: Policy Gradient Methods for RL with Function
Approximation 65




Gradient Estimation with
Observeable Input Noisel

N

# Assume that control Noise can be measured

# Measure Eligibility of each Sample
s E(h) =V_log P_(h)
= How much will log-likelihood of drawing sample h
change due to a change in t?

= F(h) ... Evaluation of History (Sum of Rewards)

@ Adjust n to make High-scoring Histories more
e v s Ly emrmy

! Lawrence, Cowan, Russell:Efficient Gradient Estimation for Motor Control Learnigg
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PEGASUS Algorithm?

#Reduce variance of gradient estimators

by controlling noise
#1n a simulator: Control the random-

number generator

1 Ng, Jordan: PEGASUS: A policy search method for large MDPs and POMDPs

67




Successful Application

N

# Dart Throwing

Simulated 3-link Arm

1 DOF per joint

Goal: hit bullseye
Parameters: Positions of
via-points for joints T
Injection of Noise made
result look more natural

Reliably hit near-center o
after 10 trials and 100 b
simulated gradient- I
estimations per step

68




N

Experiments (2)*

# Autonomously learning to fly a real
unmanned Helicopter

= 70,000 $ vehicle (Exploration is catastrophic!)

# Learned Dynamics Model from Observation of
Human Pilot

# PEGASUS Policy-Gradient RL in Simulator

# Learned to Hover on Maiden-flight
= More stable than Human

# Learned to fly complex Maneuvers accurately

1 Ng, Kim, Jordan, Sastry: Autonomous Helicopter Flight via RL (unpublished draft)
69




/Problem 4

Incorporation of
Prior Knowledge

70
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Dilemma” of RL

# Completely unsupervised learning from
scratch can work with RL

# Some solutions may surprise humans

# Result for Real-world Tasks:
= Everybody tries completely unsupervised learning

= RL takes too long to find even the simplest
solutions without prior knowledge

= Makes people think: ,,RL does not work"
= RL with some Guidance could work perfectly

71




Human and Animal Learning

N

# Learning without prior knowledge almost
never occurs in nature!

# Genetic Information:
= Young animals can walk, even without guidance
from their parents
# Training:

= Humans need Demonstration to learn complicated
movements (e.g. Golf, Tennis, Skiing, ...)

= Still they improve through experience

12




Prior Knowledge in RL

N

# Dense Rewards
= Danger of local Optimalities

# Shaping the Initial Value Functions
= By Heuristics or by Observation

# Exploration Strategy
= Visit interesting parts first
m Learning from Easy Missions [Asada]

73
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Off-policy Passive Learning?

# Sparse Rewards: mostly zero

= Learning time dominated by initial ,.blind Search*
for sparse sources of Reward

# Off-policy Methods (e.g. Q-Learning)

= Can learn passively from observation

# Initial Demonstration from advanced (human
or coded) Controller

= Policy Is learned as if it had selected the actions
supplied by the external controller

1 Smart, Kaelbling: Effective RL for Mobile Robots 74
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Advantage of Passive Learning

# No complete
understanding of
system dynamics and
Sensors necessary

# Only sample trajectories

required

# Split in 2 Phases:

= Supervised Training to
start with sesible policy

= Use of supplied controller
In Phase 2 as advisor

3]

Supplied Control
Policy

Leaming
System

(a) Phase 1

Supplied Coniral
Policy

Leaming
System

i) §

(b} Phase 2

75
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Experiments

#Real 2-wheeled Robot

#2 Tasks
= Corridor Following

s Obstacle Avoidance

#2 Supplied Controllers
= Hard-coded
s Human demonstration

76




Results

N

# Performance degrades
after Supervision ends

= Quickly recovers
= Finds even better policy
than best demonstration
# Human demonstrations

are better suited

= More Noise

= No optimal
demonstrations
necessary

# Without Knowledge

= Finding the goal once
takes longer than whole
training procedure

Steps to Goal
260 T T T T T T T T -|
240 Y ,
0 , 7
0 .
2 180 -
TS
140
120
100 F "aptimal """ T
20 .

5 T S T R T R R T
Phase One Phase Two
Training Runs | Training Runs

Performance in Corridor-
Following Task with Human
Guidance
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RL from Demonstration?

#Priming of
= Q- or V-function
= Policy (Actor-Critic Model)

s World Model

#Comparison in Different Environments
= Pendulum Swing-up
= Robot Arm Pole-balancing

1 Schaal: Learning from Demonstration, NIPS 9 (1997)

78




Experiment 1: Real Pole-balancing

N

L

# Balance a Pole with a
real Robot Arm

# Inverse Kinematics and
Dynamics available

# 30 second
Demonstration

= Learning in one single
Trial

# Without Demonstration
s 10-20 trials necessary

x UL |
1 10
#Trial

—— a) scralch

== ) primed modal

L} T T T T T r T

100

I v
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Experiment 2: Swing-up

# Value-function learning

# Primed one-step Model
did not speed up
learning

# Primed Actor:
= Initial Advantage
= Same Time necessary for
convergence
# Model-based Learning:

= Priming Model brings
advantage (DYNA-Q
~mental updates*)

}_..

50

40 : e

5‘:30:

.
4
-

20-]

m{

0]

— a) scratch

b) primed actor  ——

e ) primed model

d) primed actor&model |

1

1
100

— a) scralch

1
10

Trial

— =TT T T

b) primed model
—
100

80




N

Implicit Imitation?

# Observation of Mentor
= Distribution of Search for optimal Policies
= Guide for Exploration

# Implicit Imitation
= No replay of actions, only additional Information

s NO communication between Mentor and Observer
(e.g. commercial mentors)

= Mentor's Actions are not observeable (allows
heterogeneous Mentor and Observer)

1 Price, Boutilier: Accelerating Reinforcement Learning through Implicit Imitation, 81
Journal of Al Research 19 (2003)
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Assumptions

# Full Observeability
= Own state and reward
s Mentor™ s state

# Duplication of Actions

= Observer must be able to duplicate the Mentor™s

action with sequences of actions
# Similar Objectives

= Goal of Mentor should be similar (not necessarily

identical) to that of Observer

82




Main Ideas of Implicit Imitation

N

# Observer uses Mentor Information to build a
better World Model

» Related to Model-based RL

# Calculate more accurate State values through
better model

# Augmented Bellman Equation:

= Consider own and Mentor™s transition probabilities
for backup

83
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Homogeneous Case

# Observer and Mentor have same action space
# Confidence estimation for Mentor‘s hints

@ Estimate V.- Value of Mentor™s policy
from observer”s perspective

# Action selection:
= Either greedy action w.r.t. own V ycorver

= Or action most similar to best Mentor” s action (if
Vientor 1S Nigher than V

@ Prioritized Sweeping

observer)

84
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Extensions

#Inhomogeneous Case
= Mentor has other actions than Observer
= Feasibility Test: Can observer reproduce

this state transition (otherwise ignore)
#Multiple Mentors

85
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Experiments and Results

#Tested Iin ,tricky” Grid-Worlds
#Guided agents find good policies rapidly

#Standard RL often gets stuck in Traps

#Learned policies of Observers often
outperforms Mentors

#No results yet with humanoid Robots

86




Imitation Learning?:2

N

# Other Names:

m Learning by Watching, Teaching by Showing, Learning from
Demonstration

# Using Demonstration from Teacher to learn a
Movement
s Speed up Learning Process
= Later: Self-Improvement (e.g. RL)

# Highly successful Area of Robot Learning

= Amazing results for Humanoid Robots
= One-shot Learning of Complex Movements

1 Schaal: Is Imitation Learning the Route to Humanoid Robots? (1999)

2 Schaal, ljspeert, Billard: Computational Approaches to Motor Learning by Imitaticgg
(2003)




Schema: Imitation Learning

Learning
Systam

Seneration

\

Maotor Command

L1

L4
o+

»

Movement
Primitive 1
Mowemeant
Primitive 2
Movement
Primitive 3

Movement
Primitive 4

dada e

Movement
Frimitive n-2

- O B B EE B O E O W OE O E O E E oy

Movemeant
Frimitive n-1

(L

Movement
Frimitive n

Maotor

"~

Recurrent Connections

(effarence copyl

A0 Information
of Manipulated

Cbject

h 4

FPosture &
Mowvemeant of
Teachear

Spatial
Information

Olject
Recognition

Ferceptual |
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Imitation Learning Components

#Perception:
= Visual Tracking of demonstrated Movement

# Spatial Transformation

= Transformation of Coordinates
#Mapping to (existing) Motor Primitives
#Adjusting appropriate Primitives
#Self — Improvement

= Reinforcement Learning
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Applications of Imitation Learning

# Humanoid Robots

# Learning of Motor
Primitives

= E.g. ,Walking®,
~Grasping“, ...

# Impossible without prior
Knowledge

# Also impossible to solve
analytically
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Supervised Motor Learning

#0Optimize Parameter Vector of Policy

#Evaluation Criterion
= Difficult to design

= What is the Goal?
+ Reaching final Position?
+ Reproducing the whole Trajectory?
+ Accomplishing Task in Presence of Noise?
¢+ Rhythmic Movement?
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Methods for Imitation

N

# RL from Demonstration (see above)

# Via-Points Learning
= Spline Interpolation of Movements

# Dynamical Systems
= Assuming supplied kinematic Model

= Shaping of Differential Equations to achieve
desired Trajectories
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# Learn via-points of

Trajectory
= Interpolate smoothly

with Splines between
these points

# Adjust location of
via-points

Spline-based Imitation Learning?
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1 Miyamoto, Kawato: A tennis serve and upswing learning robot based on bi—direction%l3

theory (1998)
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Adjustment of Via-points

# Trial-and-Error Learning
= But not real RL

# Execute Policy and Measure Error (Distance

to Goal)

= Adjust Parameters (via-point coordinates) to
minimize this Error

#® Newton-like Optimization

= Estimation of Jacobi Matrix (1st partial derivations)
In first Training runs

= Estimate by applying small pertubations and
measuring impact on Error 94
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Experiment: Tennis Serve

# Robot Arms learns
Tennis Serve from
Human Demonstration

# Used ca. 20 trials to

estimate Jacobian

# Learned to hit Goal
reliably in 60 trials

# Limitations:
s Pure feedforward Control

Human Demonstration

- Via-points
Trajectory Formation, Modification
Inverse Kinematies
Desired Joint Realized
Trajectory Task
“Inverse Dynamics,
Feedback Controller

QUICK"HN:
¥ o .‘\.'
\ i




N

Problems of Via-point Learning

#Aims at explicit Imitation
= Learned policy is time-dependent

@ Difficult to generalize to other

Environments

#Not robust in coping with unforeseen
pertubations
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Shaping of Dynamical Systems?

# System of ordinary 7=a,8,(g-y)-2)
Differential Equations Y e,

# y is trajectory position S

# g Is goal (Attractor)

# y, Gaussian kernels v=a,(8,(g-x)-V)

# X, v: internal state X=V

# Attractor landscape can v exr{— 2; [;:2 —cij }

be adjusted by learning
paramters w,

1 ljspeert, Nakanishi, Schaal: Movement Imitation with Nonlinear Dynamical Systems
in Humanoid Robots (2002) 97
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Shaping of Dynamical Systems

# g IS a unigue point Attractor of the system (y = Q)

# v and x define an internal state that generates
complex Trajectories towards g
s These Trajectories can be shaped by learning w

# Non-linear Regression Problem
= Adjust w to embed demonstrated trajectory
= Locally weighted Regression

# Feedback term can be added to make on-line
modifications possible (see [ljspeert, et.al.])

# Policy Gradient RL can be used to refine behaviour?!

1 Schaal, Peters, Nakanishi, ljspeert: Learning Movement Primitives (2004) 08
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Advantages

# Policies are not time-dependent
m Only state-dependent

# Able to learn very complex Movements

# Learns stable Policies
»  With Feedback-Term robust to online pertubations

# Straightforward extension to rhythmic Movements (e.g. walking)

# Allows Recognition of Movements
m Classification in Parameter Space
= Similar Movements have similar w vectors
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Experiments (1)
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# Evolution of a
dynamical system under
pertubation

# Position Is frozen

# System recovers from
pertubation and
continuous planned
execution
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Experiments (2)
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# Trajectory Comparison

# Similar Trajectories
yield similar parameters

# Character Drawing

= Measuring Correlations in
five Trials

# Could be used for
Recognition
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Experiments (3)

# Learning Tennis Swings
= Fore- and Backhand

# Trajectories translated

with inverse dynamics

4# Humanoid Robot can
repeat Swing for
unseen Ball Positions

= Trajectories similar to
human demonstrations
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Further Results

#Imitating Rhythmic Behaviour
= Tracing a figure of 8
= Drumming

#Simulated Biped Walking
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Problems of Imitation Learning

#®Tracking of Demonstrations
#Hidden Variables
# Incompatibility Teacher — Student

#Generalization vs. Mimicking
#Time-dependence of learned Policy
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What else exists?

# Memory-based RL
#® Fuzzy RL
# Multi-objective RL

# |nverse RL
® .

# Could all be used for
Motor Learning
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Memory-based RL

# Use a short-term Memory to store important
Observations over a long time
= Overcome Violations of Markov Property
= Avoid storing finite histories

#® Memory Bits [Peshkin et.al.]
= Additional Actions that change memory bits

#® Long Short-Term Memory [Bakker]
= Recurrent Neural Networks
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Fuzzy RL

# Learn a Fuzzy Loqic Controller via
Reinforcement Learning [Gu, Hu]

# Optimize Parameters of Membership
Functions and Composition of Fuzzy Rules

# Adaptive Heuristic Critic Framework
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Inverse RL

N

# Learn the Reward Function from observation
of optimal Policy [Russell]

» Goal: Understand, which optimality principle
underlies a policy

# Problems:
= Most algorithms need full policy (not trajectories)

= Ambiguity: Many different reward functions could
be responsible for the same policy

@ Few results exist until now
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Multi-objective RL

# Reward-Function is a Vector

= Agent has to fulfill multiple tasks (e.g. reach goal
and stay alive)

= Makes design of Reward function more natural

# Algorithms are complicated and make strong
assumptions

= E.g. total ordering on reward vectors [Gabor]
= Game theoretic Principles [Shelton]
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Agenda
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#0pen Research Questions
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Learning of Motor Seguences

# Most research in Motor Learning is concerned with
learning Motor Primitives

# Learning Motor Sequences is more complicated
= Smooth switching between Primitives
= Hierarchical RL

# Examples:
= Playing a full game of Tennis
= Humanoid Robot Soccer
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Combinations of RL Technigues

N

# Explicit and Implicit Imitation
= Use Imitation Learning for a good initial policy
= Still use a Mentor for initial exploration phase

# RL with State Prediction

= Any of the presented RL techniques could be improved by
using a learned World Model for prediction of Movement
Consequences

# Non-standard Technigues
s Used mostly in artificial Grid-World Domains
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Movement Understanding

N

the principles of biological Motor Control
better

# Recognize the Goal of the Teacher by
watching a Movement

= Inverse RL (understand Reward function)

# Recognition of Movements
= E.g. in Dynamical Systems Context
= Computer Vision: e.g. gesture understanding

# Imitating a Movement makes us understand
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More Complex Behaviours

# There are still a lot of possibilities
= Advanced Robots
= Biologically Inspired Robots

s More difficult Movements

# Useful Robots

= Autonomous Working Robots

= Helping Robots: for old or handicapped people,
children, at home, etc.
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Thank Youl!
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