Machine Learning
Appendix to lecture 16

N
L/

Reinforcement Learning for
Motor Control

Michael Pfeiffer
19. 01. 2004

pfeiffer@igi.tugraz.at

/N

N

Agenda

#Motor Control
Specific Problems of Motor Control
#Reinforcement Learning (RL)

#Survey of Advanced RL Techniques
#EXisting Results
#0pen Research Questions

N

What i1s Motor Control?

#Controlling the Movement of Objects

#Biological: Understanding how the brain

controls the movement of limbs

#Engineering: Control of Robots
(especially humanoid)

#1n this talk: Emphasis on Robot Control

3

N

Definition: Motor Control?!

L

Control of a nonlinear, unreliable System

Monitoring of States with slow, low-quality
Sensors

Selection of appropriate Actions
Translation of Sensory Input to Motor Output
Monitoring of Movement to ensure Accuracy

1 R.C. Miall: Handbook of Brain Theory and Neural Networks, 2nd Ed. (2003) 4

N

Motor Learning

Adaptive Control
= Monitoring Performance of Controller
= Adapting the Behaviour of the Controller

= To achieve better Performance and compensate
gradual Changes in the Environment

Formulation:
m U= TC(X, L, OL)
= U ... Coninuous control vector
X ... Continuous state vector
m t... Time
o ... Problem Specific Parameters

“Interesting Robots

S
0™ fiatd

N

Interesting Learning Tasks

Unsupervised Motor Learning
= Learning Movements from Experience

Supervised Motor Learning
= Learning from Demonstration

Combined Supervised and Unsupervised
Learning

Not covered: Analytical and Heuristic
Solutions

= Dynamical Systems
= Fuzzy Controllers

N

Agenda

.
Specific Problems of Motor Control

¢ @ ¢ @

N

Non-linear Dynamics

Dynamics of Motor Control Problems

= Systems of Non-linear Differential Equations in
high-dimensional State Space

Instability of Solutions

Analytical Solution therefore is very difficult
(if not impossible) to achieve

Learning is necessary!

Degrees of Freedom

N
\J

4 Every joint can be controlled
separately

Huge, continuous Action Space

Arm

e

Arm Flx/Ext

idh

Arm Ab/Ad [hmeral Eotatd

e.g. 30 DOFs, 3 possible
commands per DOF:

330 > 1014 possible actions in
every state

Redundancy:

More degrees of freedom than
needed

Different ways to achieve a
trajectory

Which one is optimal?

Optimal Policy is robust to
Noise

¥rist

i«

'irl t Rnwt:

Knee Flu/Ext &

llip Flx/Ext

on Wrist 1Ext"1lﬂh Ad
HI[h||9 Ankle Torso

7%

.K
Ht_
irm
ié-i

«é «@ ﬂ

.||_'-.h||' Flo/Ex | 11/ Ext T r A

—~— T

j

Head Nod

b i

Torso Rotation

10

N

Online Adaptation

#Unknown Environments
s Difficult Terrain, etc.

#Noisy Sensors and Actuators

= Commanded Force is not always the Acutal Force

#Reflex Response to strong Pertubations

= Avoid damage to Robots

11

N

Learning Time

Learning on real Robots is very time-
consuming

Many long training runs can damage the
Robot

Simulations cannot fully overcome these
problems

» Lack of physical Realism

Learning ,from Scratch” takes too long

12

N

Other Issues

#Continuous Time, State and Actions
#Hierarchy of Behaviours
#Coordination of Movements

#Learning of World Models
#And many more...

13

Main Goals of this Talk

N

#®Present possible Solutions for
= Learning in Continuous Environments
= Reducing Learning Time
= Online Adaptation
= Incorporating A-priori Knowledge

#Showing that Reinforcement Learning IS
a suitable Tool for Motor Learning

14

Agenda

4
o
#Reinforcement Learning (RL)
4
@
4

15

N

Reinforcement Learning (RL)

Learning through Interaction with
Environment

Agent Is In State s

Agent executes Action a

Agent receives a Reward r(s,a) from the
environment

#® Goal: Maximize /ong-term discounted Reward

16

Basic RL Definitions

N

#Value Function: V7(s)= E{Zykmk+1
k=0

S, :s}

#Action-Value Function (Q-Function):

Qﬁ(S,a) = E;r|:z7/krt+k+l St = Saa‘[= a:|
k=0

#Bellman — Equation:

Q'(s,a)= E[rt+1 +7-m3xQ*(st+l,a')

S =S, a, =a:|

17

Value-Based RL

N

Policy lteration:
= Start with random policy =,
= Estimate Value-Function of m;

= Improve &, 2 m;,, by making it greedy w.r.t. to the
learned value function

= Exploration: Try out random actions to explore the
state-space

= Repeat until Convergence

Learning Algorithms:
= Q-Learning (off-policy), SARSA (on-policy)
= Actor-Critic Methods, etc. 18

N

Temporal Difference Learning

®TDerror: o, =1, +y-V(S.,)-V(S,)
Evaluation of Action:

m Positive TD-Error: Reinforce Action
= Negative TD-Error: Punish Action

TD()\): update value of previous action with
future rewards (TD-errors)

Eligibility Traces: Decay exponentially with A
. e(s) <« y-A-e(s)

19

N

Problems of Standard-RL

#Markov Property violated
#Discrete States, Actions and Time

#Learning from Scratch
#(Too) Many Training Episodes needed
#Convergence

20

N

Agenda

@
2

@
®Survey of Advanced RL Techniques
@ EXisting Results

®

21

Structure of This Chapter

N

Main Problems of
Motor Control

Possible RL
Solutions

Successful
Applications

22

Problem 1

Learning in Continuous
Environments

23

Standard Approaches for

Continuous State Spaces

N

#Discretization of State Space

#Function Approximation
s Linear Functions
m Artificial Neural Networks, etc.

= Coarse Coding, Tile Codings, RBF, ...

24

N

Function Approximation in RL

Represent State by a finite number of
Features (Observations)

Represent Q-Function as a parameterized
function of these features

= (Parameter-Vector 0)

Learn optimal parameter-vector 6™ with
Gradient Descent Optimization at each time
step

25

Problems of Value Function

N

Approximation

No Convergence Proofs
= Exception: Linear Approximators

Instabilities in Approximation
= Forgetting” of Policies

Very high Learning Time

Still it works in many Environments
s TD-Gammon (Neural Network Approximator)

26

Continuous TD-Learning?

N

& Continuous State x, Continuous Actions u
@ System Dynamics: X= f(X,u)

Policy © produces trajectory x(t)
Vt >t X = f(X,7(X))

X(t)) = X,

Value Function: s
~(t-t

V7 (X,) = jt : e © r(x(t), z(x(t)))dt

0

1 K. Doya: Reinforcement Learning in Continuous Time and Space, Neural Computation,

12(1), 219-245 (2000) .

N

Optimality Principle

Hamilton-Jacobi-Bellman (HJB) Equation

Ly (x(t) = ma{r(x(t),u(t)) +%: f (X(t),u(t))}

; u(t)eu

= Optimal Policy must satisfy this equation

Approximate Value Function by Parameter
Vector 0

= Find optimal 0

28

Continuous TD-Error

N

Self-Consistency Condition:
V (x(®) =V () =%v) —r(t)

Continuous TD-Error:

5(t) = r(t)-%v (t)+V (1)

Learning: Adjust Prediction of V to decrease
TD-Error (inconsistency)

29

N

Continuous TD()L) - Algorithm

@ Integration of Ordinary Diff. Equation
0=1-5(t)-e(t)

1

6(t) = —(—je(t) , Y X(),0)

00

K

X = f (X, 7(X))

= 1 ... Learning Rate
mk...0<kx<r1, Related to A

30

N

Policy Improvement

Exploration: Episodes start from random
Initial state

Actor-Critic:

= Approximate Policy through another Parameter
Vector 64

= Use TD-Error for Update of Policy

Choose Greedy Action w.r.t. V(x, 0)
= Continuous Optimization Problem
= [Doya] describes more approaches

31

Relation to Discrete-Time RL

N

#Implementation with Finite Time Step

#Equivalent Algorithms can be found to
= Residual Gradient
= TD(0)
= TD())

32

Problems with this Method

N

#Convergence Is not guaranteed
= Only for Discretized State-Space
= Not with Function Approximation

Instability of Policies

#®A lot of Training Data is required

33

N

Experiments (1)

Pendulum Up-Swing
with limited Torque

= Swing Pendulum to

upright position
= Not enough torque
to directly reach goal

m Five times faster
than discrete TD

O

34

N

Experiments (2)

Cart — Pole Swing-Up
= Similar to Pole-Balancing Task

= Pole has to be swung up from
arbitrary angle and balanced

= Using Continuous Eligibility
Traces makes learning three-
times faster than pure Actor-
Critic algorithm

35

/ Problem 2

Reduction of Learning Time

36

Presented Here

N

Hierarchical Reinforcement Learning
= Module-based RL

Model-Based Reinforcement Learning
- Dyna-Q
= Prioritized Sweeping

Incorporation of prior Knowledge
= Presented separately

37

N

1. Hierarchical RL

Divide and Conquer Principle
= Bring Structure into Learning Task
= Movement Primitives

Many Standard Techniques exist
= SMDP Options [Sutton]
= Feudal Learning [Dayan]
= MAXQ [Dietterich]
= Hierarchy of Abstract Machines [Parr]
= Module-based RL [Kalmar]

38

Module-based RL

N
\J

Behaviour-based Robotics
= Multiple Controllers to achieve Sub-Goals

= Gating / Switching Function decides when to
activate which Behaviour

= Simplifies Design of Controllers

Module-based Reinforcement Learning?!
= Learn Switching of Behaviours via RL
= Behaviours can be learned or hard-coded

LKalmar, Szepeszvari, Ldrincz: Module-based RL: Experiments with a real
robot. Machine Learning 31, 1998

Module-based RL

N

Phases of
Robot Programiming

Qualitative World Model :
[Suhtask A Subtask B P Subtask O -w Planning

Cuantitative World Model

fop. Cond A} [Op.Cond B} [Op.Cond. C) Design
Emm'nllerﬂ_.‘l l'l_:ﬂl'l'[l'ﬂ"ﬂ' B J l{_'Jmm'ﬂIIerCJ

Learning

State Space

Planning Step introduces prior Knowledge

Operation Conditions: When can modules be invoked?
40

Module-based RL

N

Reinforcement Learning

)

Feature Yector
Fes

Op. Cond. EI Op. Cond. a

| ;\Lmllla% I-'mlumﬂ |-Cuntl‘4:r||ﬂl' A I g tun[ml ler B

Environment _>

Remforcement

|
Op. Cond. {?I
Controller C

RL learns Switching Function to resolve
Ambiguities
= Inverse Approach (learning Modules) also possible

41

N

Experiments and Results

#®Complex Planning Task with Khepera
m RL starts from scratch

s Module-based

crafted control

s Module-based
techniques

RL comes close to hand-
er after 50 Trials

RL outperforms other RL

42

Other Hierarchical Approaches

N

Options or Macro Actions

MAXQ:Policies may recursively invoke sub-
policies (or primitive actions)

Hierarchy of Abstract Machines:
= Limit the space of possible policies
= Set of finite-state machines
= Machines may call each other recursively

43

N

2. Model-based RL

Simultaneous Learning of a Policy and a
World Model to speed-up Learning

#Learning of Transition Function in MDP

#Allows Planning during Learning

@ Approaches:
s Dyna-Q
= Prioritized Sweeping

44

Planning and Learning

N
\J

Experience improves

both Policy and value/policy
Model \\
acting
planning direct
RL
Indirect RL:
mudel experience

= Improvement of
Model may also mndel
Improve the Policy learning

45

N

Dyna-Q

Execute @ain s

Observe &, r
= Model(s, a) = (s,)

= (deterministic World) uedate

Make N offline
update steps to
Improve Q-function

7N

Pﬂﬁcyfualue functi?ns

[Environment]

planning update

search
control

Model

46

Prioritized Sweeping

N

Planning is more useful for states where a big
change in the Q-Value is expected

m €.g. predecessor states to goal states

Keep a Priority Queue of State-Action Pairs,
sorted by the predicted TD-Error
= Update Q-Value of highest-priority Pair

= Insert all predecessor pairs into Queue, according
to new expected TD-Error

Problem: Mostly suitable for discrete Worlds
4

7

Pros and Cons of Model-based RL

N

Dyna-Q and Prioritized Sweeping converge
much faster (in Toy Tasks)

Extension to Stochastic Worlds is possible

Extension to Continuous Worlds is difficult for
Prioritized Sweeping
s NO available results

Not necessary in well-known Environments
» Error-free Planning and Heuristic Search 48

/ Problem 3

Online Adaptation

49

Problem Description

N

Environment and/or Robot Characteristics are
only partially known

= Unreliable Models for Prediction (Inverse
Kinematics and Dynamics)

Value-based RL algorithms typically need a lot
of training to adapt
= Changing a Value may not immediately change
the policy
= Backup for previous actions, no change for future
actions

= Greedy Policies may change very abruptly (no
smooth policy updates) 50

Direct Reinforcement Learning

N

Direct Learning of Policy without Learning of
Value Functions (a.k.a. Policy Search, Policy
Gradient RL)

Policy Is parameterized

Policy Gradient RL:

» Gradient Ascent Optimization of Parameter Vector
representing the Policy

= Optimization of Average Reward

51

N

Definitions

Definitions in POMDP!:
s Statei € {1, ..., n}
s Observation y=v(i) € {1, ..., M}
= Controlsu € {1, ..., N}

= State Transition Matrix P(u) = [p;(u)]

m Stochastic, differentiable Policy u(0,y)

= 1 generates Markov Chain with Transition Matrix
P(0) = [p;(6)]

= P;i(6) = E,pLy] Epo.yy Pij(U)

= Stationary distribution n: n7(0) P(6) = ="(0)

1 POMDP = Partially Observeable Markov Decision Process 52

N

Policy Gradient RL!

#Policy Is parameterized by 6

#0Optimization of Average

Reward

() = gggoﬁE{irai)

= Optimizing long-term average Reward Is
equivalent to optimizing discounted reward

#Gradient Ascent on n(6)

IBaxter, Bartlett. Direct Gradient-Based Reinforcement Learning (1999)

53

Gradient Ascent Algorithm

N

Compute Gradient Vn(6) w.r.t. 6
#®#Take astep 6 € 6 + v Vn(0)

Vn = ﬂTVP[| —P+erx' r r

#® Problems:

= Stationary Distribution = of MDP and Transition
Probabilities usually unknown

= Inversion of huge Matrix
Approximation of Gradient is necessary

54

N

Gradient Approximation

_1: _1: T. .
Vn—lﬂlg}vﬂn—lﬂlg}ﬂ VPV,

& VB ... Discounted State-Values

[<[0, 1) ... Discount Factor, Bias-Variance
Trade-Off

B close to 1:
= good Approximation of Gradient
= Large Variance in Estimates of Vn
= Must be set by User in advance

55

GPOMDP Algorithm

S¥

Estimate Gradient from a single sample
Path of the POMDP

1. zo = 0, A=0

2. FORALL observations y,, controls u, and subsequent
rewards r(i,,,)

3. :th_l_vp'u(e’yt)

1,0,v,)
4. p =4 +§[r t+1 t+l_At]

END

56

N

Explanation of GPOMDP

@A, computes average of r,, -z,
= Proof in [Baxter, Bartlett]

@®lim,,, A= Vgn
= Convergence to Gradient Estimate

= Longer GPOMDP runs needed for exact
estimation (Variance depends on f3)

S7

N

Experimental Results

Comparing real and
estimated Gradient

n3state MOP g | [EEE]
Small 3 E; m? E\QQ:\-\
= Greater bias ; : ;E&t;
@ Large 3 g
= Later convergence 0-'3"3'11_ S 1':":'DT1'3"3“3"I'1'I'DEIGEI1e+|:|E1.3; ,

58

GSEARCH

N

Estimation of Gradient with GPOMDRP is
computationally expensive

= Fixed search length is therefore inefficient

Line-search

fixed

&
< L

V.

Better: Do a line search in the direction of the
Gradient Estimate: GSEARCH

59

N

|ldea of GSEARCH

#Bracket the Maximum in direction 6~
between two points 0,, 6,

= GRAD(8,)- 6*>0, GRAD(8,))- 6*<0

= Maximum is in [0, 6,]
s Quadratic Interpolation to find Maximum

60

CONJPOMDP

N

#®Policy-Gradient Algorithm
s Uses GPOMDP for Gradient Estimation

m Uses GSEARCH for finding Maximum in
Gradient Direction

= Continues until Changes fall below
threshold

s [rains Parameters for Controllers

= Involves many Simulated lterations of
Markov Chain for Gradient Estimations

61

OLPOMDP

N

#Directly adjust Parameter Vector during
Running Time

#Same Algorithm as GPOMDP, only
actions are directly executed and 0 is
Immediately updated

#NO0 convergence Results yet

62

N

Mountainous Puck
World

s Similar to Mountain Car

Navigate a Puck out of
a valley to a plateau

= Not enough power to
directly climb the hill

4 Train Neural-Network
controllers

CONJPOMDP
= 1 Mio. Runs for GPOMDP

Average Reward
_ = M) L oo @ = m
- | | - = = | - = = | - | -

Experiments and Results

IEANE TTTH-}-:J['H'H'}H}H
] 1L
J'r"_
:xff
2e+07 de+07 Get7 Bet07

Iterations

1e+08

63

N

VAPS [Baird, Moorel}

#® Value And Policy Search

Combination of both Algorithm types
= Allows to define Error function e, dependent on

parameter vector 0

= e determines Update rule (e.g. SARSA, Q-learning,
REINFORCE (policy-search)...)

Gradient Ascent Optimization

s Guaranteed (local) Convergence for all function
approximators

1 Baird, Moore: Gradient Descent for General RL (1999) 64

N

Policy Gradient Theorem?

Theorem:

If the value-function parameterization is
compatible with the policy parameterization, then
the true policy gradient can be estimated, the

variance of the estimation can be controlled by a
reinforcement baseline, and policy iteration
converges to a locally optimal policy.

Significance:

= Shows first convergence proof for policy iteration
with function approximation.

1 Sutton,McAllester, Singh, Mansour: Policy Gradient Methods for RL with Function
Approximation 65

Gradient Estimation with
Observeable Input Noisel

N

Assume that control Noise can be measured

Measure Eligibility of each Sample
s E(h) =V_log P_(h)
= How much will log-likelihood of drawing sample h
change due to a change in t?

= F(h) ... Evaluation of History (Sum of Rewards)

@ Adjust n to make High-scoring Histories more
e v s Ly emrmy

! Lawrence, Cowan, Russell:Efficient Gradient Estimation for Motor Control Learnigg

N

PEGASUS Algorithm?

#Reduce variance of gradient estimators

by controlling noise
#1n a simulator: Control the random-

number generator

1 Ng, Jordan: PEGASUS: A policy search method for large MDPs and POMDPs

67

Successful Application

N

Dart Throwing

Simulated 3-link Arm

1 DOF per joint

Goal: hit bullseye
Parameters: Positions of
via-points for joints T
Injection of Noise made
result look more natural

Reliably hit near-center o
after 10 trials and 100 b
simulated gradient- I
estimations per step

68

N

Experiments (2)*

Autonomously learning to fly a real
unmanned Helicopter

= 70,000 $ vehicle (Exploration is catastrophic!)

Learned Dynamics Model from Observation of
Human Pilot

PEGASUS Policy-Gradient RL in Simulator

Learned to Hover on Maiden-flight
= More stable than Human

Learned to fly complex Maneuvers accurately

1 Ng, Kim, Jordan, Sastry: Autonomous Helicopter Flight via RL (unpublished draft)
69

/Problem 4

Incorporation of
Prior Knowledge

70

N

Dilemma” of RL

Completely unsupervised learning from
scratch can work with RL

Some solutions may surprise humans

Result for Real-world Tasks:
= Everybody tries completely unsupervised learning

= RL takes too long to find even the simplest
solutions without prior knowledge

= Makes people think: ,,RL does not work"
= RL with some Guidance could work perfectly

71

Human and Animal Learning

N

Learning without prior knowledge almost
never occurs in nature!

Genetic Information:
= Young animals can walk, even without guidance
from their parents
Training:

= Humans need Demonstration to learn complicated
movements (e.g. Golf, Tennis, Skiing, ...)

= Still they improve through experience

12

Prior Knowledge in RL

N

Dense Rewards
= Danger of local Optimalities

Shaping the Initial Value Functions
= By Heuristics or by Observation

Exploration Strategy
= Visit interesting parts first
m Learning from Easy Missions [Asada]

73

N

Off-policy Passive Learning?

Sparse Rewards: mostly zero

= Learning time dominated by initial ,.blind Search*
for sparse sources of Reward

Off-policy Methods (e.g. Q-Learning)

= Can learn passively from observation

Initial Demonstration from advanced (human
or coded) Controller

= Policy Is learned as if it had selected the actions
supplied by the external controller

1 Smart, Kaelbling: Effective RL for Mobile Robots 74

N

Advantage of Passive Learning

No complete
understanding of
system dynamics and
Sensors necessary

Only sample trajectories

required

Split in 2 Phases:

= Supervised Training to
start with sesible policy

= Use of supplied controller
In Phase 2 as advisor

3]

Supplied Control
Policy

Leaming
System

(a) Phase 1

Supplied Coniral
Policy

Leaming
System

i) §

(b} Phase 2

75

N

Experiments

#Real 2-wheeled Robot

#2 Tasks
= Corridor Following

s Obstacle Avoidance

#2 Supplied Controllers
= Hard-coded
s Human demonstration

76

Results

N

Performance degrades
after Supervision ends

= Quickly recovers
= Finds even better policy
than best demonstration
Human demonstrations

are better suited

= More Noise

= No optimal
demonstrations
necessary

Without Knowledge

= Finding the goal once
takes longer than whole
training procedure

Steps to Goal
260 T T T T T T T T -|
240 Y ,
0 , 7
0 .
2 180 -
TS
140
120
100 F "aptimal """ T
20 .

5 T S T R T R R T
Phase One Phase Two
Training Runs | Training Runs

Performance in Corridor-
Following Task with Human
Guidance

77

N

RL from Demonstration?

#Priming of
= Q- or V-function
= Policy (Actor-Critic Model)

s World Model

#Comparison in Different Environments
= Pendulum Swing-up
= Robot Arm Pole-balancing

1 Schaal: Learning from Demonstration, NIPS 9 (1997)

78

Experiment 1: Real Pole-balancing

N

L

Balance a Pole with a
real Robot Arm

Inverse Kinematics and
Dynamics available

30 second
Demonstration

= Learning in one single
Trial

Without Demonstration
s 10-20 trials necessary

x UL |
1 10
#Trial

—— a) scralch

==) primed modal

L} T T T T T r T

100

I v

N

Experiment 2: Swing-up

Value-function learning

Primed one-step Model
did not speed up
learning

Primed Actor:
= Initial Advantage
= Same Time necessary for
convergence
Model-based Learning:

= Priming Model brings
advantage (DYNA-Q
~mental updates*)

}_..

50

40 : e

5‘:30:

.
4
-

20-]

m{

0]

— a) scratch

b) primed actor ——

e) primed model

d) primed actor&model |

1

1
100

— a) scralch

1
10

Trial

— =TT T T

b) primed model
—
100

80

N

Implicit Imitation?

Observation of Mentor
= Distribution of Search for optimal Policies
= Guide for Exploration

Implicit Imitation
= No replay of actions, only additional Information

s NO communication between Mentor and Observer
(e.g. commercial mentors)

= Mentor's Actions are not observeable (allows
heterogeneous Mentor and Observer)

1 Price, Boutilier: Accelerating Reinforcement Learning through Implicit Imitation, 81
Journal of Al Research 19 (2003)

N

Assumptions

Full Observeability
= Own state and reward
s Mentor™ s state

Duplication of Actions

= Observer must be able to duplicate the Mentor™s

action with sequences of actions
Similar Objectives

= Goal of Mentor should be similar (not necessarily

identical) to that of Observer

82

Main Ideas of Implicit Imitation

N

Observer uses Mentor Information to build a
better World Model

» Related to Model-based RL

Calculate more accurate State values through
better model

Augmented Bellman Equation:

= Consider own and Mentor™s transition probabilities
for backup

83

N

Homogeneous Case

Observer and Mentor have same action space
Confidence estimation for Mentor‘s hints

@ Estimate V.- Value of Mentor™s policy
from observer”s perspective

Action selection:
= Either greedy action w.r.t. own V ycorver

= Or action most similar to best Mentor” s action (if
Vientor 1S Nigher than V

@ Prioritized Sweeping

observer)

84

N

Extensions

#Inhomogeneous Case
= Mentor has other actions than Observer
= Feasibility Test: Can observer reproduce

this state transition (otherwise ignore)
#Multiple Mentors

85

N

Experiments and Results

#Tested Iin ,tricky” Grid-Worlds
#Guided agents find good policies rapidly

#Standard RL often gets stuck in Traps

#Learned policies of Observers often
outperforms Mentors

#No results yet with humanoid Robots

86

Imitation Learning?:2

N

Other Names:

m Learning by Watching, Teaching by Showing, Learning from
Demonstration

Using Demonstration from Teacher to learn a
Movement
s Speed up Learning Process
= Later: Self-Improvement (e.g. RL)

Highly successful Area of Robot Learning

= Amazing results for Humanoid Robots
= One-shot Learning of Complex Movements

1 Schaal: Is Imitation Learning the Route to Humanoid Robots? (1999)

2 Schaal, ljspeert, Billard: Computational Approaches to Motor Learning by Imitaticgg
(2003)

Schema: Imitation Learning

Learning
Systam

Seneration

\

Maotor Command

L1

L4
o+

»

Movement
Primitive 1
Mowemeant
Primitive 2
Movement
Primitive 3

Movement
Primitive 4

dada e

Movement
Frimitive n-2

- O B B EE B O E O W OE O E O E E oy

Movemeant
Frimitive n-1

(L

Movement
Frimitive n

Maotor

"~

Recurrent Connections

(effarence copyl

A0 Information
of Manipulated

Cbject

h 4

FPosture &
Mowvemeant of
Teachear

Spatial
Information

Olject
Recognition

Ferceptual |

88

N

Imitation Learning Components

#Perception:
= Visual Tracking of demonstrated Movement

Spatial Transformation

= Transformation of Coordinates
#Mapping to (existing) Motor Primitives
#Adjusting appropriate Primitives
#Self — Improvement

= Reinforcement Learning

89

N

Applications of Imitation Learning

Humanoid Robots

Learning of Motor
Primitives

= E.g. ,Walking®,
~Grasping“, ...

Impossible without prior
Knowledge

Also impossible to solve
analytically

90

N

Supervised Motor Learning

#0Optimize Parameter Vector of Policy

#Evaluation Criterion
= Difficult to design

= What is the Goal?
+ Reaching final Position?
+ Reproducing the whole Trajectory?
+ Accomplishing Task in Presence of Noise?
¢+ Rhythmic Movement?

91

Methods for Imitation

N

RL from Demonstration (see above)

Via-Points Learning
= Spline Interpolation of Movements

Dynamical Systems
= Assuming supplied kinematic Model

= Shaping of Differential Equations to achieve
desired Trajectories

92

N

Learn via-points of

Trajectory
= Interpolate smoothly

with Splines between
these points

Adjust location of
via-points

Spline-based Imitation Learning?

=
=
b { N |
: o 78
lime [sec.] time [sec.] time [sec.]
w wl w
- ELErT T Py ot s
= >~ g ek g2 Nl
>3r >ar >ar
st 3t
gll i ' By —r y $|I 5 230
lime [sec.] time [sec.] time [sec]
-
=
o O BV
; .
O
=1 L 1
] 1.0
time [sec)]

1 Miyamoto, Kawato: A tennis serve and upswing learning robot based on bi—direction%l3

theory (1998)

N

Adjustment of Via-points

Trial-and-Error Learning
= But not real RL

Execute Policy and Measure Error (Distance

to Goal)

= Adjust Parameters (via-point coordinates) to
minimize this Error

#® Newton-like Optimization

= Estimation of Jacobi Matrix (1st partial derivations)
In first Training runs

= Estimate by applying small pertubations and
measuring impact on Error 94

N

Experiment: Tennis Serve

Robot Arms learns
Tennis Serve from
Human Demonstration

Used ca. 20 trials to

estimate Jacobian

Learned to hit Goal
reliably in 60 trials

Limitations:
s Pure feedforward Control

Human Demonstration

- Via-points
Trajectory Formation, Modification
Inverse Kinematies
Desired Joint Realized
Trajectory Task
“Inverse Dynamics,
Feedback Controller

QUICK"HN:
¥ o .‘\.'
\ i

N

Problems of Via-point Learning

#Aims at explicit Imitation
= Learned policy is time-dependent

@ Difficult to generalize to other

Environments

#Not robust in coping with unforeseen
pertubations

96

N

Shaping of Dynamical Systems?

System of ordinary 7=a,8,(g-y)-2)
Differential Equations Y e,

y is trajectory position S

g Is goal (Attractor)

y, Gaussian kernels v=a,(8,(g-x)-V)

X, v: internal state X=V

Attractor landscape can v exr{— 2; [;:2 —cij }

be adjusted by learning
paramters w,

1 ljspeert, Nakanishi, Schaal: Movement Imitation with Nonlinear Dynamical Systems
in Humanoid Robots (2002) 97

N

Shaping of Dynamical Systems

g IS a unigue point Attractor of the system (y = Q)

v and x define an internal state that generates
complex Trajectories towards g
s These Trajectories can be shaped by learning w

Non-linear Regression Problem
= Adjust w to embed demonstrated trajectory
= Locally weighted Regression

Feedback term can be added to make on-line
modifications possible (see [ljspeert, et.al.])

Policy Gradient RL can be used to refine behaviour?!

1 Schaal, Peters, Nakanishi, ljspeert: Learning Movement Primitives (2004) 08

N

Advantages

Policies are not time-dependent
m Only state-dependent

Able to learn very complex Movements

Learns stable Policies
» With Feedback-Term robust to online pertubations

Straightforward extension to rhythmic Movements (e.g. walking)

Allows Recognition of Movements
m Classification in Parameter Space
= Similar Movements have similar w vectors

99

Experiments (1)

N
\J

Evolution of a
dynamical system under
pertubation

Position Is frozen

System recovers from
pertubation and
continuous planned
execution

......

HE]

Time [s]

L] 1 18 2

Time [5]

'o

Aﬁlﬁc‘ﬁm i

WM

100

Experiments (2)

N
\J

Trajectory Comparison

Similar Trajectories
yield similar parameters

Character Drawing

= Measuring Correlations in
five Trials

Could be used for
Recognition

EREERCDOOOEEDDDOO000
| ANEEEEDEEEEE0OO00000

00
=N
00
000000000
0 O [O
EEmmmnn | | | | s««en
OOOO000CMENERCO0000]
DoO0C0CAEEERCO00O0
EOBEOOOOONEREEOOO0O]
IEIBDDDEIIIIIDDDDD

[O

-]] 1U l2

101

N

Experiments (3)

Learning Tennis Swings
= Fore- and Backhand

Trajectories translated

with inverse dynamics

4# Humanoid Robot can
repeat Swing for
unseen Ball Positions

= Trajectories similar to
human demonstrations

N

Further Results

#Imitating Rhythmic Behaviour
= Tracing a figure of 8
= Drumming

#Simulated Biped Walking

103

N

Problems of Imitation Learning

#®Tracking of Demonstrations
#Hidden Variables
Incompatibility Teacher — Student

#Generalization vs. Mimicking
#Time-dependence of learned Policy

104

N

What else exists?

Memory-based RL
#® Fuzzy RL
Multi-objective RL

|nverse RL
® .

Could all be used for
Motor Learning

105

N

Memory-based RL

Use a short-term Memory to store important
Observations over a long time
= Overcome Violations of Markov Property
= Avoid storing finite histories

#® Memory Bits [Peshkin et.al.]
= Additional Actions that change memory bits

#® Long Short-Term Memory [Bakker]
= Recurrent Neural Networks

106

N

Fuzzy RL

Learn a Fuzzy Loqic Controller via
Reinforcement Learning [Gu, Hu]

Optimize Parameters of Membership
Functions and Composition of Fuzzy Rules

Adaptive Heuristic Critic Framework

107

Inverse RL

N

Learn the Reward Function from observation
of optimal Policy [Russell]

» Goal: Understand, which optimality principle
underlies a policy

Problems:
= Most algorithms need full policy (not trajectories)

= Ambiguity: Many different reward functions could
be responsible for the same policy

@ Few results exist until now

108

N

Multi-objective RL

Reward-Function is a Vector

= Agent has to fulfill multiple tasks (e.g. reach goal
and stay alive)

= Makes design of Reward function more natural

Algorithms are complicated and make strong
assumptions

= E.g. total ordering on reward vectors [Gabor]
= Game theoretic Principles [Shelton]

109

N

Agenda

¢ @& @ e

#0pen Research Questions

110

N

Learning of Motor Seguences

Most research in Motor Learning is concerned with
learning Motor Primitives

Learning Motor Sequences is more complicated
= Smooth switching between Primitives
= Hierarchical RL

Examples:
= Playing a full game of Tennis
= Humanoid Robot Soccer

111

Combinations of RL Technigues

N

Explicit and Implicit Imitation
= Use Imitation Learning for a good initial policy
= Still use a Mentor for initial exploration phase

RL with State Prediction

= Any of the presented RL techniques could be improved by
using a learned World Model for prediction of Movement
Consequences

Non-standard Technigues
s Used mostly in artificial Grid-World Domains

112

Movement Understanding

N

the principles of biological Motor Control
better

Recognize the Goal of the Teacher by
watching a Movement

= Inverse RL (understand Reward function)

Recognition of Movements
= E.g. in Dynamical Systems Context
= Computer Vision: e.g. gesture understanding

Imitating a Movement makes us understand

113

N

More Complex Behaviours

There are still a lot of possibilities
= Advanced Robots
= Biologically Inspired Robots

s More difficult Movements

Useful Robots

= Autonomous Working Robots

= Helping Robots: for old or handicapped people,
children, at home, etc.

114

N
\J

Thank Youl!

115

N

4

® &

& ® @

References: RL

Sutton, Barto: Reinforcement Learning: An Introduction (1998)

Continuous Learning:

Coulom: Feedforward Neural Networks in RL applied to High-dimensional Motor
Control (2002)

Doya: RL in continuous Time and Space (2000)

Hierarchical RL:

Dietterich: Hierarchical RL with the MAXQ Value Function Decomposition (2000)

Kalmar, Szepeszvari, LOrincz: Module-based RL: Experiments with a real robot
(1998)

116

N

References: Policy Gradient

Baird, Moore: Gradient Descent for General RL (1999)
Baxter, Bartlett: Direct Gradient-Based RL (1999)
Baxter, Bartlett: RL in POMDP” s via Direct Gradient Ascent (2000)

Lawrence, Cowan, Russell: Efficient Gradient Estimation for Motor Control
Learning (2003)

Ng, Jordan: PEGASUS: A policy search method for large MDPs and POMDPs
(2000)

Ng, Kim, Jordan, Sastry: Autonomous Helicopter Flight via RL (unpublished
draft)

Peters, Vijayakumar, Schaal: RL for humanoid robots (2003)

Sutton, McAllester, Singh, Mansour: Policy Gradient Methods for RL with
Function Approximation (2000)

®*e® ® ® & o e

117

N

References: Prior Knowledge

4 Price, Boutilier: Accelerating RL through Implicit Imitation (2003)
Schaal: Learning from Demonstration (1997)
Smart, Kaelbling: Effective RL for Mobile Robots (2002)

118

N

® @& & * & @

References: Imitation Learning

Arbib: Handbook of Brain Theory and Neural Networks, 2nd Ed. (2003)

ljspeert, Nakanishi, Schaal: Movement Imitation with Nonlinear Dynamical
Systems in Humanoid Robots (2002)

ljspeert, Nakanishi, Schaal: Learning Attractor Landscapes for Learning Motor
Primitives (2003)

Miyamoto, Kawato: A tennis serve and upswing learning robot based on bi-
directional Theory (1998)

Schaal: Is Imitation Learning the Route to Humanoid Robots? (1999)

Schaal, ljspeert, Billard: Computational Approaches to Motor Learning by
Imitation (2003)

Schaal, Peters, Nakanishi, ljspeert: Learning Movement Primitives (2004)

119

References: Non-standard Techniques

N

L

Bakker: RL with Long Short-Term Memory (2002)

Gabor, Kalmar, Szepesvari: Multi-criteria RL (1998)

Gu, Hu: RL for Fuzzy Logic Controllers for Quadruped Walking Robots (2002)
Peshkin, Meuleau, Kaelbling: Learning Policies with External Memory (1999)
Russell:Learning Agents for Uncertain Environments (1998)

Shelton: Balancing Multiple Sources of Reward in RL (2000)

® & @ eeee

Sprague, Ballard: Multiple-Goal RL with Modular SARSA(0) (2003)

120

