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What is Motor Control?

Controlling the Movement of Objects

Biological: Understanding how the brain 
controls the movement of limbs
Engineering: Control of Robots 
(especially humanoid)

In this talk: Emphasis on Robot Control
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Definition: Motor Control1

Control of a nonlinear, unreliable System
Monitoring of States with slow, low-quality 
Sensors
Selection of appropriate Actions
Translation of Sensory Input to Motor Output
Monitoring of Movement to ensure Accuracy

1 R.C. Miall: Handbook of Brain Theory and Neural Networks, 2nd Ed. (2003)
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Motor Learning
Adaptive Control

Monitoring Performance of Controller
Adapting the Behaviour of the Controller
To achieve better Performance and compensate
gradual Changes in the Environment

Formulation:
u = π(x, t, α)
u ... Coninuous control vector
x ... Continuous state vector
t ... Time
α ... Problem Specific Parameters
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Interesting Robots

No
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Interesting Learning Tasks

Unsupervised Motor Learning
Learning Movements from Experience

Supervised Motor Learning
Learning from Demonstration

Combined Supervised and Unsupervised 
Learning

Not covered: Analytical and Heuristic 
Solutions

Dynamical Systems
Fuzzy Controllers
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Non-linear Dynamics

Dynamics of Motor Control Problems
Systems of Non-linear Differential Equations in 
high-dimensional State Space

Instability of Solutions
Analytical Solution therefore is very difficult 
(if not impossible) to achieve

Learning is necessary!
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Degrees of Freedom

Every joint can be controlled 
separately
Huge, continuous Action Space

e.g. 30 DOFs, 3 possible 
commands per DOF: 
330 > 1014 possible actions in 
every state

Redundancy:
More degrees of freedom than 
needed
Different ways to achieve a 
trajectory
Which one is optimal?
Optimal Policy is robust to 
Noise
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Online Adaptation

Unknown Environments
Difficult Terrain, etc.

Noisy Sensors and Actuators
Commanded Force is not always the Acutal Force

Reflex Response to strong Pertubations
Avoid damage to Robots
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Learning Time

Learning on real Robots is very time-
consuming
Many long training runs can damage the 
Robot
Simulations cannot fully overcome these 
problems

Lack of physical Realism

Learning „from Scratch“ takes too long
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Other Issues

Continuous Time, State and Actions
Hierarchy of Behaviours
Coordination of Movements
Learning of World Models
And many more…
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Main Goals of this Talk

Present possible Solutions for
Learning in Continuous Environments
Reducing Learning Time
Online Adaptation
Incorporating A-priori Knowledge

Showing that Reinforcement Learning is 
a suitable Tool for Motor Learning
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Reinforcement Learning (RL)

Learning through Interaction with 
Environment

Agent is in State s
Agent executes Action a
Agent receives a Reward r(s,a) from the 
environment

Goal: Maximize long-term discounted Reward
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Basic RL Definitions

Value Function:

Action-Value Function (Q-Function): 

Bellman – Equation:
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Value-Based RL

Policy Iteration:
Start with random policy π0

Estimate Value-Function of πi

Improve πi πi+1 by making it greedy w.r.t. to the 
learned value function
Exploration: Try out random actions to explore the 
state-space
Repeat until Convergence

Learning Algorithms: 
Q-Learning (off-policy), SARSA (on-policy)
Actor-Critic Methods, etc.
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Temporal Difference Learning

TD error:
Evaluation of Action:

Positive TD-Error: Reinforce Action
Negative TD-Error: Punish Action

TD(λ): update value of previous action with 
future rewards (TD-errors)
Eligibility Traces: Decay exponentially with λ
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Problems of Standard-RL

Markov Property violated
Discrete States, Actions and Time
Learning from Scratch
(Too) Many Training Episodes needed
Convergence
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Agenda

Motor Control
Specific Problems of Motor Control
Reinforcement Learning (RL)
Survey of Advanced RL Techniques
Existing Results
Open Research Questions



22

Structure of This Chapter

Main Problems of 
Motor Control

Possible RL 
Solutions

Successful 
Applications
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Problem 1

Learning in Continuous 
Environments
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Standard Approaches for 
Continuous State Spaces

Discretization of State Space
Coarse Coding, Tile Codings, RBF, ...

Function Approximation
Linear Functions
Artificial Neural Networks, etc.
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Function Approximation in RL

Represent State by a finite number of 
Features (Observations)

Represent Q-Function as a parameterized 
function of these features 

(Parameter-Vector θ)

Learn optimal parameter-vector θ* with 
Gradient Descent Optimization at each time 
step



26

Problems of Value Function 
Approximation

No Convergence Proofs
Exception: Linear Approximators

Instabilities in Approximation
„Forgetting“ of Policies

Very high Learning Time

Still it works in many Environments
TD-Gammon (Neural Network Approximator)
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Continuous TD-Learning1

Continuous State x, Continuous Actions u
System Dynamics: 

Policy π produces trajectory x(t)

Value Function:
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Optimality Principle

Hamilton-Jacobi-Bellman (HJB) Equation

Optimal Policy must satisfy this equation

Approximate Value Function by Parameter 
Vector θ

Find optimal θ
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Continuous TD-Error

Self-Consistency Condition:

Continuous TD-Error:

Learning: Adjust Prediction of V to decrease 
TD-Error (inconsistency)
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Continuous TD(λ) - Algorithm

Integration of Ordinary Diff. Equation

η ... Learning Rate
κ ... 0 < κ ≤ τ, Related to λ
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Policy Improvement

Exploration: Episodes start from random 
initial state
Actor-Critic:

Approximate Policy through another Parameter 
Vector θA

Use TD-Error for Update of Policy

Choose Greedy Action w.r.t. V(x, θ)
Continuous Optimization Problem
[Doya] describes more approaches
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Relation to Discrete-Time RL

Implementation with Finite Time Step

Equivalent Algorithms can be found to
Residual Gradient
TD(0)
TD(λ)
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Problems with this Method

Convergence is not guaranteed
Only for Discretized State-Space
Not with Function Approximation

Instability of Policies

A lot of Training Data is required
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Experiments (1)

Pendulum Up-Swing 
with limited Torque

Swing Pendulum to 
upright position
Not enough torque 
to directly reach goal

Five times faster 
than discrete TD
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Experiments (2)

Cart – Pole Swing-Up
Similar to Pole-Balancing Task
Pole has to be swung up from 
arbitrary angle and balanced

Using Continuous Eligibility 
Traces makes learning three-
times faster than pure Actor-
Critic algorithm
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Problem 2

Reduction of Learning Time
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Presented Here

Hierarchical Reinforcement Learning
Module-based RL

Model-Based Reinforcement Learning
Dyna-Q
Prioritized Sweeping

Incorporation of prior Knowledge
Presented separately
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1. Hierarchical RL

Divide and Conquer Principle
Bring Structure into Learning Task
Movement Primitives

Many Standard Techniques exist
SMDP Options [Sutton]
Feudal Learning [Dayan]
MAXQ [Dietterich]
Hierarchy of Abstract Machines [Parr]
Module-based RL [Kalmár]
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Module-based RL

Behaviour-based Robotics
Multiple Controllers to achieve Sub-Goals
Gating / Switching Function decides when to 
activate which Behaviour
Simplifies Design of Controllers

Module-based Reinforcement Learning1

Learn Switching of Behaviours via RL
Behaviours can be learned or hard-coded

1Kalmár, Szepeszvári, Lörincz: Module-based RL: Experiments with a real 
robot. Machine Learning 31, 1998
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Module-based RL

Planning Step introduces prior Knowledge
Operation Conditions: When can modules be invoked?
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Module-based RL

RL learns Switching Function to resolve 
Ambiguities

Inverse Approach (learning Modules) also possible
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Experiments and Results

Complex Planning Task with Khepera
RL starts from scratch
Module-based RL comes close to hand-
crafted controller after 50 Trials
Module-based RL outperforms other RL 
techniques
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Other Hierarchical Approaches

Options or Macro Actions

MAXQ:Policies may recursively invoke sub-
policies (or primitive actions)

Hierarchy of Abstract Machines: 
Limit the space of possible policies
Set of finite-state machines
Machines may call each other recursively
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2. Model-based RL

Simultaneous Learning of a Policy and a 
World Model to speed-up Learning
Learning of Transition Function in MDP
Allows Planning during Learning

Approaches:
Dyna-Q
Prioritized Sweeping
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Planning and Learning

Experience improves 
both Policy and 
Model

Indirect RL:
Improvement of 
Model may also 
improve the Policy
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Dyna-Q

Execute a in s
Observe s‘, r

Model(s, a) = (s‘, r)
(deterministic World)

Make N offline
update steps to 
improve Q-function
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Prioritized Sweeping

Planning is more useful for states where a big 
change in the Q-Value is expected

e.g. predecessor states to goal states

Keep a Priority Queue of State-Action Pairs, 
sorted by the predicted TD-Error

Update Q-Value of highest-priority Pair
Insert all predecessor pairs into Queue, according 
to new expected TD-Error

Problem: Mostly suitable for discrete Worlds
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Pros and Cons of Model-based RL

Dyna-Q and Prioritized Sweeping converge 
much faster (in Toy Tasks)

Extension to Stochastic Worlds is possible

Extension to Continuous Worlds is difficult for 
Prioritized Sweeping

No available results

Not necessary in well-known Environments 
Error-free Planning and Heuristic Search
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Problem 3

Online Adaptation
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Problem Description
Environment and/or Robot Characteristics are 
only partially known

Unreliable Models for Prediction (Inverse 
Kinematics and Dynamics)

Value-based RL algorithms typically need a lot 
of training to adapt

Changing a Value may not immediately change 
the policy
Backup for previous actions, no change for future
actions
Greedy Policies may change very abruptly (no 
smooth policy updates)
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Direct Reinforcement Learning

Direct Learning of Policy without Learning of 
Value Functions (a.k.a. Policy Search, Policy 
Gradient RL)

Policy is parameterized
Policy Gradient RL: 

Gradient Ascent Optimization of Parameter Vector 
representing the Policy
Optimization of Average Reward
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Definitions

Definitions in POMDP1:
State i ∈ {1, ..., n}
Observation y=ν(i) ∈ {1, ..., M}
Controls u ∈ {1, ..., N}
State Transition Matrix P(u) = [pij(u)]
Stochastic, differentiable Policy µ(θ,y)
µ generates Markov Chain with Transition Matrix 
P(θ) = [pij(θ)]
pij(θ) = Eν(i)[y] Eµ(θ,y) pij(u)
Stationary distribution π: πT(θ) P(θ) = πT(θ)  

1 POMDP = Partially Observeable Markov Decision Process
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Policy Gradient RL1

Policy is parameterized by θ
Optimization of Average Reward

Optimizing long-term average Reward is 
equivalent to optimizing discounted reward

Gradient Ascent on η(θ)
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Gradient Ascent Algorithm

Compute Gradient ∇η(θ) w.r.t. θ
Take a step θ θ + γ ∇η(θ)

Problems:
Stationary Distribution π of MDP and Transition 
Probabilities usually unknown
Inversion of huge Matrix

Approximation of Gradient is necessary

[ ] rePIP TT 1η −
+−∇=∇ ππ
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Gradient Approximation

Vβ ... Discounted State-Values
β ∈[0, 1) ... Discount Factor, Bias-Variance 
Trade-Off

β close to 1:
good Approximation of Gradient
Large Variance in Estimates of ∇βη
Must be set by User in advance
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GPOMDP Algorithm

Estimate Gradient from a single sample 
Path of the POMDP

1. z0 = 0, ∆0=0

2. FORALL observations yt, controls ut and subsequent 
rewards r(it+1)

3.

4.

5. END
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Explanation of GPOMDP

∆t computes average of ri(t)·zt

Proof in [Baxter, Bartlett]

limt ∞ ∆t = ∇βη
Convergence to Gradient Estimate
Longer GPOMDP runs needed for exact 
estimation (Variance depends on β)
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Experimental Results

Comparing real and 
estimated Gradient 
in 3-state MDP
Small β

Greater bias

Large β
Later convergence
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GSEARCH

Estimation of Gradient with GPOMDP is 
computationally expensive

Fixed search length is therefore inefficient

Better: Do a line search in the direction of the 
Gradient Estimate: GSEARCH

∇

Line-search

fixed
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Idea of GSEARCH

Bracket the Maximum in direction θ*

between two points θ1, θ2

GRAD(θ1)· θ*>0, GRAD(θ2) )· θ*<0
Maximum is in [θ1, θ2]
Quadratic Interpolation to find Maximum
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CONJPOMDP

Policy-Gradient Algorithm
Uses GPOMDP for Gradient Estimation
Uses GSEARCH for finding Maximum in 
Gradient Direction
Continues until Changes fall below 
threshold
Trains Parameters for Controllers
Involves many Simulated Iterations of 
Markov Chain for Gradient Estimations
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OLPOMDP

Directly adjust Parameter Vector during 
Running Time
Same Algorithm as GPOMDP, only 
actions are directly executed and θ is 
immediately updated

No convergence Results yet
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Experiments and Results

Mountainous Puck 
World

Similar to Mountain Car
Navigate a Puck out of 
a valley to a plateau

Not enough power to 
directly climb the hill

Train Neural-Network 
controllers
CONJPOMDP

1 Mio. Runs for GPOMDP
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VAPS [Baird, Moore]1

Value And Policy Search

Combination of both Algorithm types
Allows to define Error function e, dependent on 
parameter vector θ
e determines Update rule (e.g. SARSA, Q-learning, 
REINFORCE (policy-search)...)

Gradient Ascent Optimization
Guaranteed (local) Convergence for all function 
approximators

1 Baird, Moore: Gradient Descent for General RL (1999)
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Policy Gradient Theorem1

Theorem:
If the value-function parameterization is 
compatible with the policy parameterization, then 
the true policy gradient can be estimated, the 
variance of the estimation can be controlled by a 
reinforcement baseline, and policy iteration 
converges to a locally optimal policy. 

Significance:
Shows first convergence proof for policy iteration 
with function approximation.

1 Sutton,McAllester, Singh, Mansour: Policy Gradient Methods for RL with Function 
Approximation
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Gradient Estimation with 
Observeable Input Noise1

Assume that control Noise can be measured
Measure Eligibility of each Sample

E(h) = ∇π log Pπ(h)
How much will log-likelihood of drawing sample h 
change due to a change in π?
F(h) ... Evaluation of History (Sum of Rewards)

Adjust π to make High-scoring Histories more 
likely

1 Lawrence, Cowan, Russell:Efficient Gradient Estimation for Motor Control Learning
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PEGASUS Algorithm1

Reduce variance of gradient estimators 
by controlling noise
In a simulator: Control the random-
number generator

1 Ng, Jordan: PEGASUS: A policy search method for large MDPs and POMDPs
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Successful Application 

Dart Throwing
Simulated 3-link Arm
1 DOF per joint
Goal: hit bullseye
Parameters: Positions of 
via-points for joints
Injection of Noise made 
result look more natural
Reliably hit near-center 
after 10 trials and 100 
simulated gradient-
estimations per step
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Experiments (2)1

Autonomously learning to fly a real 
unmanned Helicopter

70,000 $ vehicle (Exploration is catastrophic!)
Learned Dynamics Model from Observation of 
Human Pilot
PEGASUS Policy-Gradient RL in Simulator
Learned to Hover on Maiden-flight

More stable than Human
Learned to fly complex Maneuvers accurately

1 Ng, Kim, Jordan, Sastry: Autonomous Helicopter Flight via RL (unpublished draft)
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Problem 4

Incorporation of 
Prior Knowledge
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„Dilemma“ of RL

Completely unsupervised learning from 
scratch can work with RL
Some solutions may surprise humans

Result for Real-world Tasks:
Everybody tries completely unsupervised learning
RL takes too long to find even the simplest 
solutions without prior knowledge
Makes people think: „RL does not work“
RL with some Guidance could work perfectly
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Human and Animal Learning

Learning without prior knowledge almost 
never occurs in nature!

Genetic Information:
Young animals can walk, even without guidance 
from their parents

Training:
Humans need Demonstration to learn complicated 
movements (e.g. Golf, Tennis, Skiing, ...)
Still they improve through experience
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Prior Knowledge in RL

Dense Rewards
Danger of local Optimalities

Shaping the Initial Value Functions
By Heuristics or by Observation

Exploration Strategy
Visit interesting parts first
Learning from Easy Missions [Asada]



74

Off-policy Passive Learning1

Sparse Rewards: mostly zero
Learning time dominated by initial „blind Search“
for sparse sources of Reward

Off-policy Methods (e.g. Q-Learning)
Can learn passively from observation

Initial Demonstration from advanced (human 
or coded) Controller

Policy is learned as if it had selected the actions 
supplied by the external controller

1 Smart, Kaelbling: Effective RL for Mobile Robots
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Advantage of Passive Learning

No complete 
understanding of 
system dynamics and 
sensors necessary
Only sample trajectories 
required

Split in 2 Phases:
Supervised Training to 
start with sesible policy
Use of supplied controller 
in Phase 2 as advisor
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Experiments

Real 2-wheeled Robot
2 Tasks

Corridor Following
Obstacle Avoidance

2 Supplied Controllers
Hard-coded
Human demonstration
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Results
Performance degrades 
after Supervision ends

Quickly recovers
Finds even better policy 
than best demonstration

Human demonstrations 
are better suited

More Noise
No optimal 
demonstrations 
necessary

Without Knowledge
Finding the goal once 
takes longer than whole 
training procedure

Performance in Corridor-
Following Task with Human 

Guidance
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RL from Demonstration1

Priming of
Q- or V-function
Policy (Actor-Critic Model)
World Model

Comparison in Different Environments
Pendulum Swing-up
Robot Arm Pole-balancing

1 Schaal: Learning from Demonstration, NIPS 9 (1997)
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Experiment 1: Real Pole-balancing

Balance a Pole with a 
real Robot Arm

Inverse Kinematics and 
Dynamics available
30 second 
Demonstration

Learning in one single 
Trial

Without Demonstration
10-20 trials necessary 
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Experiment 2: Swing-up

Value-function learning
Primed one-step Model
did not speed up 
learning
Primed Actor:

Initial Advantage
Same Time necessary for 
convergence

Model-based Learning:
Priming Model brings 
advantage (DYNA-Q 
„mental updates“)



81

Implicit Imitation1

Observation of Mentor
Distribution of Search for optimal Policies
Guide for Exploration

Implicit Imitation
No replay of actions, only additional Information
No communication between Mentor and Observer 
(e.g. commercial mentors)
Mentor‘s Actions are not observeable (allows 
heterogeneous Mentor and Observer)

1 Price, Boutilier: Accelerating Reinforcement Learning through Implicit Imitation, 
Journal of AI Research 19 (2003)
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Assumptions

Full Observeability
Own state and reward
Mentor´s state

Duplication of Actions
Observer must be able to duplicate the Mentor´s 
action with sequences of actions

Similar Objectives
Goal of Mentor should be similar (not necessarily 
identical) to that of Observer
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Main Ideas of Implicit Imitation

Observer uses Mentor Information to build a 
better World Model

Related to Model-based RL

Calculate more accurate State values through 
better model

Augmented Bellman Equation:
Consider own and Mentor´s transition probabilities 
for backup
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Homogeneous Case

Observer and Mentor have same action space
Confidence estimation for Mentor‘s hints
Estimate Vmentor: Value of Mentor´s policy 
from observer´s perspective

Action selection:
Either greedy action w.r.t. own Vobserver

Or action most similar to best Mentor´s action (if 
Vmentor is higher than Vobserver)

Prioritized Sweeping
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Extensions

Inhomogeneous Case
Mentor has other actions than Observer
Feasibility Test: Can observer reproduce 
this state transition (otherwise ignore)

Multiple Mentors
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Experiments and Results

Tested in „tricky“ Grid-Worlds
Guided agents find good policies rapidly
Standard RL often gets stuck in Traps
Learned policies of Observers often 
outperforms Mentors

No results yet with humanoid Robots
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Imitation Learning1,2

Other Names: 
Learning by Watching, Teaching by Showing, Learning from 
Demonstration

Using Demonstration from Teacher to learn a 
Movement

Speed up Learning Process
Later: Self-Improvement (e.g. RL)

Highly successful Area of Robot Learning
Amazing results for Humanoid Robots
One-shot Learning of Complex Movements

1 Schaal: Is Imitation Learning the Route to Humanoid Robots? (1999)

2 Schaal, Ijspeert, Billard: Computational Approaches to Motor Learning by Imitation 
(2003)
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Schema: Imitation Learning
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Imitation Learning Components

Perception:
Visual Tracking of demonstrated Movement

Spatial Transformation
Transformation of Coordinates

Mapping to (existing) Motor Primitives
Adjusting appropriate Primitives
Self – improvement

Reinforcement Learning
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Applications of Imitation Learning

Humanoid Robots

Learning of Motor 
Primitives

E.g. „Walking“, 
„Grasping“, ...

Impossible without prior 
Knowledge
Also impossible to solve 
analytically
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Supervised Motor Learning

Optimize Parameter Vector of Policy
Evaluation Criterion

Difficult to design
What is the Goal?

Reaching final Position?
Reproducing the whole Trajectory?
Accomplishing Task in Presence of Noise?
Rhythmic Movement?
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Methods for Imitation

RL from Demonstration (see above)

Via-Points Learning
Spline Interpolation of Movements

Dynamical Systems
Assuming supplied kinematic Model
Shaping of Differential Equations to achieve 
desired Trajectories



93

Spline-based Imitation Learning1

Learn via-points of 
Trajectory

Interpolate smoothly 
with Splines between 
these points

Adjust location of 
via-points

1 Miyamoto, Kawato: A tennis serve and upswing learning robot based on bi-directional 
theory (1998)
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Adjustment of Via-points

Trial-and-Error Learning
But not real RL

Execute Policy and Measure Error (Distance 
to Goal)

Adjust Parameters (via-point coordinates) to 
minimize this Error

Newton-like Optimization
Estimation of Jacobi Matrix (1st partial derivations) 
in first Training runs
Estimate by applying small pertubations and 
measuring impact on Error
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Experiment: Tennis Serve

Robot Arms learns 
Tennis Serve from 
Human Demonstration
Used ca. 20 trials to 
estimate Jacobian
Learned to hit Goal 
reliably in 60 trials

Limitations:
Pure feedforward Control
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Problems of Via-point Learning

Aims at explicit Imitation
Learned policy is time-dependent

Difficult to generalize to other 
Environments
Not robust in coping with unforeseen 
pertubations
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Shaping of Dynamical Systems1

System of ordinary 
Differential Equations
y is trajectory position
g is goal (Attractor)
ψi Gaussian kernels
x, v: internal state

Attractor landscape can 
be adjusted by learning 
paramters wi

1 Ijspeert, Nakanishi, Schaal: Movement Imitation with Nonlinear Dynamical Systems 
in Humanoid Robots (2002)
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Shaping of Dynamical Systems

g is a unique point Attractor of the system (y g)
v and x define an internal state that generates 
complex Trajectories towards g

These Trajectories can be shaped by learning w
Non-linear Regression Problem

Adjust w to embed demonstrated trajectory
Locally weighted Regression

Feedback term can be added to make on-line 
modifications possible (see [Ijspeert, et.al.])
Policy Gradient RL can be used to refine behaviour1

1 Schaal, Peters, Nakanishi, Ijspeert: Learning Movement Primitives (2004)
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Advantages

Policies are not time-dependent
Only state-dependent

Able to learn very complex Movements

Learns stable Policies
With Feedback-Term robust to online pertubations

Straightforward extension to rhythmic Movements (e.g. walking)

Allows Recognition of Movements
Classification in Parameter Space
Similar Movements have similar w vectors
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Experiments (1)

Evolution of a 
dynamical system under 
pertubation

Position is frozen

System recovers from 
pertubation and 
continuous planned 
execution
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Experiments (2)

Trajectory Comparison
Similar Trajectories 
yield similar parameters

Character Drawing
Measuring Correlations in 
five Trials

Could be used for 
Recognition



102

Experiments (3)

Learning Tennis Swings
Fore- and Backhand

Trajectories translated 
with inverse dynamics

Humanoid Robot can 
repeat Swing for 
unseen Ball Positions

Trajectories similar to 
human demonstrations
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Further Results

Imitating Rhythmic Behaviour
Tracing a figure of 8
Drumming

Simulated Biped Walking
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Problems of Imitation Learning

Tracking of Demonstrations
Hidden Variables
Incompatibility Teacher – Student
Generalization vs. Mimicking
Time-dependence of learned Policy
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What else exists?

Memory-based RL
Fuzzy RL
Multi-objective RL
Inverse RL
...

Could all be used for 
Motor Learning
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Memory-based RL

Use a short-term Memory to store important 
Observations over a long time

Overcome Violations of Markov Property
Avoid storing finite histories

Memory Bits [Peshkin et.al.]
Additional Actions that change memory bits

Long Short-Term Memory [Bakker]
Recurrent Neural Networks
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Fuzzy RL

Learn a Fuzzy Logic Controller via 
Reinforcement Learning [Gu, Hu]

Optimize Parameters of Membership 
Functions and Composition of Fuzzy Rules

Adaptive Heuristic Critic Framework
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Inverse RL

Learn the Reward Function from observation 
of optimal Policy [Russell]

Goal: Understand, which optimality principle 
underlies a policy

Problems:
Most algorithms need full policy (not trajectories)
Ambiguity: Many different reward functions could 
be responsible for the same policy

Few results exist until now
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Multi-objective RL

Reward-Function is a Vector
Agent has to fulfill multiple tasks (e.g. reach goal 
and stay alive)
Makes design of Reward function more natural

Algorithms are complicated and make strong 
assumptions

E.g. total ordering on reward vectors [Gabor]
Game theoretic Principles [Shelton]



110

Agenda

Motor Control
Specific Problems of Motor Control
Reinforcement Learning (RL)
Survey of Advanced RL Techniques
Existing Results
Open Research Questions
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Learning of Motor Sequences

Most research in Motor Learning is concerned with 
learning Motor Primitives

Learning Motor Sequences is more complicated
Smooth switching between Primitives
Hierarchical RL

Examples:
Playing a full game of Tennis
Humanoid Robot Soccer
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Combinations of RL Techniques

Explicit and Implicit Imitation
Use Imitation Learning for a good initial policy
Still use a Mentor for initial exploration phase

RL with State Prediction
Any of the presented RL techniques could be improved by 
using a learned World Model for prediction of Movement 
Consequences

Non-standard Techniques
Used mostly in artificial Grid-World Domains
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Movement Understanding

Imitating a Movement makes us understand 
the principles of biological Motor Control 
better

Recognize the Goal of the Teacher by 
watching a Movement

Inverse RL (understand Reward function)

Recognition of Movements
E.g. in Dynamical Systems Context
Computer Vision: e.g. gesture understanding
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More Complex Behaviours

There are still a lot of possibilities
Advanced Robots
Biologically Inspired Robots
More difficult Movements

Useful Robots
Autonomous Working Robots
Helping Robots: for old or handicapped people, 
children, at home, etc.
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Thank You!



116

References: RL

Sutton, Barto: Reinforcement Learning: An Introduction (1998)

Continuous Learning:
Coulom: Feedforward Neural Networks in RL applied to High-dimensional Motor 
Control (2002)
Doya: RL in continuous Time and Space (2000)

Hierarchical RL:
Dietterich: Hierarchical RL with the MAXQ Value Function Decomposition (2000)
Kalmar, Szepeszvari, Lörincz: Module-based RL: Experiments with a real robot 
(1998)



117

References: Policy Gradient
Baird, Moore: Gradient Descent for General RL (1999)
Baxter, Bartlett: Direct Gradient-Based RL (1999)
Baxter, Bartlett: RL in POMDP´s via Direct Gradient Ascent (2000)
Lawrence, Cowan, Russell: Efficient Gradient Estimation for Motor Control 
Learning (2003)
Ng, Jordan: PEGASUS: A policy search method for large MDPs and POMDPs 
(2000) 
Ng, Kim, Jordan, Sastry: Autonomous Helicopter Flight via RL (unpublished 
draft)
Peters, Vijayakumar, Schaal: RL for humanoid robots (2003)
Sutton, McAllester, Singh, Mansour: Policy Gradient Methods for RL with 
Function Approximation (2000)



118

References: Prior Knowledge
Price, Boutilier: Accelerating RL through Implicit Imitation (2003)
Schaal: Learning from Demonstration (1997)
Smart, Kaelbling: Effective RL for Mobile Robots (2002)



119

References: Imitation Learning

Arbib: Handbook of Brain Theory and Neural Networks, 2nd Ed. (2003)
Ijspeert, Nakanishi, Schaal: Movement Imitation with Nonlinear Dynamical 
Systems in Humanoid Robots (2002)
Ijspeert, Nakanishi, Schaal: Learning Attractor Landscapes for Learning Motor 
Primitives (2003)
Miyamoto, Kawato: A tennis serve and upswing learning robot based on bi-
directional Theory (1998)
Schaal: Is Imitation Learning the Route to Humanoid Robots? (1999)
Schaal, Ijspeert, Billard: Computational Approaches to Motor Learning by 
Imitation (2003)
Schaal, Peters, Nakanishi, Ijspeert: Learning Movement Primitives (2004)



120

References: Non-standard Techniques

Bakker: RL with Long Short-Term Memory (2002)
Gabor, Kalmar, Szepesvari: Multi-criteria RL (1998)
Gu, Hu: RL for Fuzzy Logic Controllers for Quadruped Walking Robots (2002)
Peshkin, Meuleau, Kaelbling: Learning Policies with External Memory (1999)
Russell:Learning Agents for Uncertain Environments (1998)
Shelton: Balancing Multiple Sources of Reward in RL (2000)
Sprague, Ballard: Multiple-Goal RL with Modular SARSA(0) (2003)


