Machine Learning Appendix to lecture 16 Reinforcement Learning for Motor Control

> Michael Pfeiffer 19. 01. 2004 pfeiffer@igi.tugraz.at

# Agenda Motor Control Specific Problems of Motor Control Reinforcement Learning (RL) Survey of Advanced RL Techniques Existing Results Open Research Questions



Controlling the <u>Movement</u> of Objects

 Biological: Understanding how the brain controls the movement of limbs
 Engineering: Control of Robots (especially humanoid)

In this talk: Emphasis on <u>Robot Control</u>

#### Definition: Motor Control<sup>1</sup>

- Control of a <u>nonlinear</u>, <u>unreliable</u> System
- Monitoring of States with <u>slow</u>, <u>low-quality</u> <u>Sensors</u>
- Selection of <u>appropriate Actions</u>
- ♦ <u>Translation</u> of Sensory Input to Motor Output
- Monitoring of Movement to ensure Accuracy

## Motor Learning

#### Adaptive Control

- <u>Monitoring</u> Performance of Controller
- <u>Adapting</u> the Behaviour of the Controller
- To achieve <u>better Performance</u> and <u>compensate</u> gradual Changes in the Environment

#### Formulation:

- $u = \pi(x, t, \alpha)$
- u ... Coninuous control vector
- x ... Continuous state vector
- t ... Time
- α … Problem Specific Parameters

## Interesting Robots













# Interesting Learning Tasks

Unsupervised Motor Learning

 Learning Movements from Experience

 Supervised Motor Learning

 Learning from Demonstration

 Combined Supervised and Unsupervised Learning

- Not covered: Analytical and Heuristic Solutions
  - Dynamical Systems
  - Fuzzy Controllers

# Agenda Motor Control Specific Problems of Motor Control Reinforcement Learning (RL) Survey of Advanced RL Techniques Existing Results Open Research Questions

# Non-linear Dynamics

Oynamics of Motor Control Problems

- Systems of <u>Non-linear Differential Equations</u> in <u>high-dimensional State Space</u>
- Instability of Solutions
- Analytical Solution therefore is very difficult (if not impossible) to achieve



## **Degrees of Freedom**

- Every joint can be controlled <u>separately</u>
- Huge, continuous <u>Action Space</u>
  - e.g. 30 DOFs, 3 possible commands per DOF:
  - 3<sup>30</sup> > 10<sup>14</sup> possible actions in every state
- Redundancy:
  - More degrees of freedom than needed
  - Different ways to achieve a trajectory
  - Which one is optimal?
  - Optimal Policy is <u>robust to</u> <u>Noise</u>



## **Online Adaptation**

#### Unknown Environments

Difficult Terrain, etc.

#### Noisy Sensors and Actuators

Commanded Force is not always the Acutal Force

### Reflex Response to strong Pertubations

Avoid damage to Robots

## Learning Time

Learning on real Robots is <u>very time-</u> <u>consuming</u>

- Many long training runs can <u>damage</u> the Robot
- Simulations cannot fully overcome these problems
  - Lack of physical <u>Realism</u>



## **Other Issues**

Continuous Time, State and Actions
Hierarchy of Behaviours
Coordination of Movements
Learning of World Models
And many more...

## Main Goals of this Talk

Present possible Solutions for
Learning in Continuous Environments
Reducing Learning Time
Online Adaptation
Incorporating A-priori Knowledge

Showing that <u>Reinforcement Learning</u> is a suitable Tool for Motor Learning

# Agenda Motor Control Specific Problems of Motor Control Reinforcement Learning (RL) Survey of Advanced RL Techniques Existing Results Open Research Questions

# Reinforcement Learning (RL)

Learning through <u>Interaction with</u> <u>Environment</u>

♦ Agent is in State *s* 

- Agent executes Action a
- Agent receives a *Reward r(s,a)* from the environment

Goal: Maximize long-term discounted Reward

**Value Function:** 
$$V^{\pi}(s) = E_{\pi} \left[ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \middle| s_{t} = s \right]$$

Action-Value Function (Q-Function):

$$Q^{\pi}(s,a) = E_{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \middle| s_{t} = s, a_{t} = a\right]$$

Bellman – Equation:

$$Q^{*}(s,a) = E\left[r_{t+1} + \gamma \cdot \max_{a'} Q^{*}(s_{t+1},a') \middle| s_{t} = s, a_{t} = a\right]$$

## Value-Based RL

Policy Iteration:

- Start with random policy  $\pi_0$
- Estimate Value-Function of π<sub>i</sub>
- Improve  $\pi_i \rightarrow \pi_{i+1}$  by making it greedy w.r.t. to the learned value function
- Exploration: Try out random actions to explore the state-space
- Repeat until Convergence

#### Learning Algorithms:

- Q-Learning (off-policy), SARSA (on-policy)
- Actor-Critic Methods, etc.

## Temporal Difference Learning

♦ TD error:  $\delta_t = r_{t+1} + \gamma \cdot V(s_{t+1}) - V(s_t)$ ♦ Evaluation of Action:

- Positive TD-Error: Reinforce Action
- Negative TD-Error: Punish Action



 $\blacklozenge$  Eligibility Traces: Decay exponentially with  $\lambda$ 

$$e(s) \leftarrow \gamma \cdot \lambda \cdot e(s)$$



Markov Property violated
 Discrete States, Actions and Time
 Learning from Scratch
 (Too) Many Training Episodes needed
 Convergence

# Agenda Motor Control Specific Problems of Motor Control Reinforcement Learning (RL) Survey of Advanced RL Techniques Existing Results Open Research Questions

## Structure of This Chapter

Main Problems of Motor Control

Possible RL Solutions





### Problem 1

### Learning in Continuous Environments

Standard Approaches for Continuous State Spaces

Discretization of State Space

• Coarse Coding, Tile Codings, RBF, ...

Function Approximation

- Linear Functions
- Artificial Neural Networks, etc.

# Function Approximation in RL

Represent State by a finite number of Features (Observations)



function of these features

• (Parameter-Vector  $\theta$ )

 $\bullet$  Learn optimal parameter-vector  $\theta^*$  with Gradient Descent Optimization at each time step

Problems of Value Function Approximation

No <u>Convergence</u> Proofs
Exception: Linear Approximators

Instabilities in Approximation

"Forgetting" of Policies

Very high <u>Learning Time</u>

Still it works in many Environments
TD-Gammon (Neural Network Approximator)

### Continuous TD-Learning<sup>1</sup>

Continuous State x, Continuous Actions u
 System Dynamics:  $\dot{x} = f(x, u)$ 

• Policy  $\pi$  produces trajectory x(t)

$$\forall t \ge t_0 \qquad \dot{x} = f(x, \pi(x))$$
$$x(t_0) = x_0$$

♦ Value Function:  

$$V^{\pi}(x_0) = \int_{t=t_0}^{\infty} e^{-\frac{(t-t_0)}{\tau}} r(x(t), \pi(x(t))) dt$$

<sup>1</sup> *K. Doya*: Reinforcement Learning in Continuous Time and Space, Neural Computation, 12(1), 219-245 (2000)

Optimal Policy must satisfy this equation

- Approximate Value Function by Parameter
   Vector θ
  - Find optimal θ

Self-Consistency Condition:  $\dot{V}(x(t)) = \dot{V}(t) = \frac{1}{\tau}V(t) - r(t)$ 

Continuous TD-Error:

$$\delta(t) = r(t) - \frac{1}{\tau}V(t) + \dot{V}(t)$$



Continuous TD( $\lambda$ ) - Algorithm Integration of Ordinary Diff. Equation  $\dot{\theta} = \eta \cdot \delta(t) \cdot e(t)$  $\dot{e}(t) = -\left(\frac{1}{\kappa}\right)e(t) + \frac{\partial V(x(t),\theta)}{\partial \theta}$  $\dot{x} = f(x, \pi(x))$ 

> •  $\eta$  ... Learning Rate •  $\kappa$  ... 0 <  $\kappa \le \tau$ , Related to  $\lambda$

#### Policy Improvement

Exploration: Episodes start from random initial state

#### Actor-Critic:

- Approximate Policy through another Parameter Vector  $\theta^{\text{A}}$
- Use TD-Error for Update of Policy
- $\diamond$  Choose Greedy Action w.r.t. V(x,  $\theta$ )
  - Continuous Optimization Problem
  - [Doya] describes more approaches



## Problems with this Method

Convergence is not guaranteed
Only for Discretized State-Space
Not with Function Approximation

Instability of Policies

A lot of Training Data is required

# Experiments (1)

Pendulum Up-Swing with limited Torque

- Swing Pendulum to upright position
- Not enough torque to directly reach goal
- Five times faster than discrete TD



# Experiments (2)

- Cart Pole Swing-Up
  - Similar to Pole-Balancing Task
  - Pole has to be swung up from arbitrary angle and balanced
  - Using Continuous Eligibility Traces makes learning threetimes faster than pure Actor-Critic algorithm



### Problem 2

### **Reduction of Learning Time**
### Presented Here

Hierarchical Reinforcement Learning
 Module-based RL

#### Model-Based Reinforcement Learning

- Dyna-Q
- Prioritized Sweeping

Incorporation of prior Knowledge

Presented separately

# 1. Hierarchical RL

#### ♦ <u>Divide and Conquer</u> Principle

- Bring <u>Structure</u> into Learning Task
- Movement Primitives

#### Many Standard Techniques exist

- SMDP Options [Sutton]
- Feudal Learning [Dayan]
- MAXQ [Dietterich]
- Hierarchy of Abstract Machines [Parr]
- Module-based RL [Kalmár]

### Module-based RL

#### Behaviour-based Robotics

- Multiple Controllers to achieve Sub-Goals
- Gating / Switching Function decides when to activate which Behaviour
- Simplifies Design of Controllers

#### Module-based Reinforcement Learning<sup>1</sup>

- Learn Switching of Behaviours via RL
- Behaviours can be learned or hard-coded

<sup>1</sup>*Kalmár, Szepeszvári, Lörincz:* Module-based RL: Experiments with a real robot. Machine Learning 31, 1998

### Module-based RL



Planning Step introduces prior Knowledge
 Operation Conditions: When can modules be invoked?





- RL learns Switching Function to resolve Ambiguities
  - Inverse Approach (learning Modules) also possible

### **Experiments and Results**

#### Complex Planning Task with Khepera

- RL starts from scratch
- Module-based RL comes close to handcrafted controller after 50 Trials
- Module-based RL outperforms other RL techniques

## **Other Hierarchical Approaches**

Options or <u>Macro Actions</u>

MAXQ: Policies may recursively invoke subpolicies (or primitive actions)



- Hierarchy of Abstract Machines:
  - Limit the space of possible policies
  - Set of finite-state machines
  - Machines may call each other recursively

# 2. Model-based RL

 Simultaneous Learning of a Policy and a <u>World Model</u> to speed-up Learning
 Learning of <u>Transition Function</u> in MDP
 Allows <u>Planning</u> during Learning



- Dyna-Q
- Prioritized Sweeping







Make N <u>offline</u> update steps to improve Q-function

# **Prioritized Sweeping**

Planning is more useful for states where a <u>big</u> <u>change in the Q-Value is expected</u>

e.g. predecessor states to goal states

Keep a <u>Priority Queue</u> of State-Action Pairs, sorted by the predicted TD-Error

Update Q-Value of highest-priority Pair

 Insert all predecessor pairs into Queue, according to new expected TD-Error

Problem: Mostly suitable for <u>discrete</u> Worlds

### Pros and Cons of Model-based RL

Dyna-Q and Prioritized Sweeping <u>converge</u> <u>much faster</u> (in Toy Tasks)

Extension to <u>Stochastic</u> Worlds is possible

- Extension to <u>Continuous Worlds</u> is difficult for Prioritized Sweeping
  - No available results

Not necessary in well-known Environments
 Error-free Planning and Heuristic Search

### Problem 3

### **Online Adaptation**

### **Problem Description**

- Environment and/or Robot Characteristics are only <u>partially known</u>
  - Unreliable Models for Prediction (Inverse Kinematics and Dynamics)
- Value-based RL algorithms typically need a lot of training to adapt
  - Changing a Value may not immediately change the policy
  - Backup for previous actions, no change for <u>future</u> actions

50

Greedy Policies may change very <u>abruptly</u> (no smooth policy updates)

# **Direct Reinforcement Learning**

Direct Learning of Policy without Learning of Value Functions (a.k.a. *Policy Search, Policy* Gradient RL)



- Policy is parameterized
- Policy Gradient RL:
  - Gradient Ascent Optimization of Parameter Vector representing the Policy
  - Optimization of Average Reward

### Definitions

♦ Definitions in POMDP<sup>1</sup>:

- State  $i \in \{1, ..., n\}$
- Observation  $y=v(i) \in \{1, ..., M\}$
- Controls  $u \in \{1, ..., N\}$
- State Transition Matrix P(u) = [p<sub>ij</sub>(u)]
- Stochastic, differentiable Policy  $\mu(\theta, y)$
- $\mu$  generates Markov Chain with Transition Matrix  $P(\theta) = [p_{ij}(\theta)]$
- $p_{ij}(\theta) = E_{v(i)}[y] E_{\mu(\theta,y)} p_{ij}(u)$
- Stationary distribution  $\pi$ :  $\pi^{T}(\theta) P(\theta) = \pi^{T}(\theta)$

Policy is parameterized by θ
Optimization of Average Reward  $\eta(\theta) \coloneqq \lim_{N \to \infty} \frac{1}{N} E_{\theta} \left[ \sum_{t=1}^{N} r(t_i) \right]$ 

 Optimizing long-term average Reward is equivalent to optimizing discounted reward
 Gradient Ascent on η(θ)

# Gradient Ascent Algorithm

♦ Compute Gradient ∇η(θ) w.r.t. θ
♦ Take a step θ ← θ + γ ∇η(θ) ∇η = π<sup>T</sup>∇P[I - P + eπ<sup>T</sup>]<sup>-1</sup>r

#### Problems:

- Stationary Distribution  $\pi$  of MDP and Transition Probabilities usually <u>unknown</u>
- Inversion of huge Matrix
- Approximation of Gradient is necessary



#### $\$ $\beta$ close to 1:

- good Approximation of Gradient
- Large Variance in Estimates of  $\nabla_\beta\eta$
- Must be set by User in advance

### GPOMDP Algorithm

Estimate Gradient from a single sample Path of the POMDP

1. 
$$z_0 = 0$$
,  $\Delta_0 = 0$ 

2. FORALL observations  $y_t$  , controls  $u_t$  and subsequent rewards r(i\_{t+1})

3. 
$$z_{t+1} = \beta z_{t} + \frac{\nabla \mu_{u}(\theta, y_{t})}{\mu_{u}(\theta, y_{t})}$$
4. 
$$\Delta_{t+1} = \Delta_{t} + \frac{1}{t+1} \left[ r(i_{t+1}) z_{t+1} - \Delta_{t} \right]$$
5. END



 $\operatorname{\otimes lim}_{t \to \infty} \Delta_t = \nabla_{\beta} \eta$ 

- Convergence to Gradient Estimate
- Longer GPOMDP runs needed for exact estimation (Variance depends on β)

# **Experimental Results**

 Comparing real and estimated Gradient in 3-state MDP

 $\otimes$  Small  $\beta$ 

- Greater bias
- **♦ Large** β
  - Later convergence





# Idea of GSEARCH

Structure Bracket the Maximum in direction  $\theta^*$ between two points  $\theta_1$ ,  $\theta_2$ 

- $GRAD(\theta_1) \cdot \theta^* > 0, GRAD(\theta_2) \cdot \theta^* < 0$
- Maximum is in  $[\theta_1, \theta_2]$
- Quadratic Interpolation to find Maximum

# CONJPOMDP

Policy-Gradient Algorithm

- Uses GPOMDP for Gradient Estimation
- Uses GSEARCH for finding Maximum in Gradient Direction
- Continues until Changes fall below threshold
- Trains Parameters for Controllers
- Involves many Simulated Iterations of Markov Chain for Gradient Estimations

## OLPOMDP

Directly adjust Parameter Vector during Running Time

Same Algorithm as GPOMDP, only actions are directly executed and θ is immediately updated

No convergence Results yet

## **Experiments and Results**

- Mountainous Puck
   World
  - Similar to Mountain Car
- Navigate a Puck out of a valley to a plateau
  - Not enough power to directly climb the hill
- Train Neural-Network controllers
- CONJPOMDP
  - 1 Mio. Runs for GPOMDP



# VAPS [Baird, Moore]<sup>1</sup>

#### ♦ Value And Policy Search

#### Combination of both Algorithm types

- Allows to define Error function *e*, dependent on parameter vector θ
- *e* determines Update rule (e.g. SARSA, Q-learning, REINFORCE (policy-search)...)
- Gradient Ascent Optimization
  - Guaranteed (local) Convergence for all function approximators

# Policy Gradient Theorem<sup>1</sup>

#### Theorem:

If the value-function parameterization is *compatible* with the policy parameterization, then the true policy gradient can be estimated, the *variance of the estimation* can be controlled by a reinforcement baseline, and policy iteration *converges to a locally optimal* policy.

#### ♦ Significance:

 Shows first convergence proof for policy iteration with function approximation.

<sup>1</sup> Sutton,McAllester, Singh, Mansour: Policy Gradient Methods for RL with Function Approximation <sup>65</sup> Gradient Estimation with Observeable Input Noise<sup>1</sup>

Assume that control Noise can be measured
 Measure Eligibility of each Sample

- $E(h) = \nabla_{\pi} \log P_{\pi}(h)$
- How much will log-likelihood of drawing sample h change due to a change in  $\pi$ ?
- F(h) ... Evaluation of History (Sum of Rewards)

♦ Adjust π to make High-scoring Histories more likely
$$\nabla_{\theta} \approx \frac{1}{N} \sum_{i=1}^{N} E(h_i) F(h_i)$$

<sup>1</sup> Lawrence, Cowan, Russell:Efficient Gradient Estimation for Motor Control Learning

# PEGASUS Algorithm<sup>1</sup>

Reduce variance of gradient estimators by controlling noise

In a simulator: Control the <u>random-</u> <u>number generator</u>

<sup>1</sup> Ng, Jordan: PEGASUS: A policy search method for large MDPs and POMDPs

### **Successful Application**

#### Dart Throwing

- Simulated 3-link Arm
- 1 DOF per joint
- Goal: hit bullseye
- Parameters: Positions of via-points for joints
- Injection of Noise made result look more natural
- Reliably hit near-center after 10 trials and 100 simulated gradientestimations per step



# Experiments (2)<sup>1</sup>

Autonomously learning to fly a real unmanned <u>Helicopter</u>

- 70,000 \$ vehicle (Exploration is catastrophic!)
- Learned Dynamics Model from Observation of Human Pilot
- PEGASUS Policy-Gradient RL in Simulator
- Learned to Hover on Maiden-flight
  - More stable than Human
- Learned to fly complex Maneuvers accurately

<sup>&</sup>lt;sup>1</sup> Ng, Kim, Jordan, Sastry: Autonomous Helicopter Flight via RL (unpublished draft)

### Problem 4

# Incorporation of Prior Knowledge

# "Dilemma" of RL

Completely unsupervised learning from scratch can work with RL

Some solutions may <u>surprise</u> humans

Result for Real-world Tasks:

- Everybody tries completely unsupervised learning
- RL takes too long to find even the simplest solutions without prior knowledge
- Makes people think: <u>"RL does not work</u>"
- RL with some <u>Guidance</u> could work perfectly

# Human and Animal Learning

Learning without prior knowledge almost never occurs in nature!



 Young animals can walk, even without guidance from their parents

#### ♦ <u>Training:</u>

- Humans need <u>Demonstration</u> to learn complicated movements (e.g. Golf, Tennis, Skiing, ...)
- Still they improve through experience
## Prior Knowledge in RL

Dense Rewards
Danger of local Optimalities

Shaping the Initial Value Functions
By Heuristics or by Observation

Exploration Strategy

- Visit interesting parts first
- Learning from Easy Missions [Asada]

## Off-policy Passive Learning<sup>1</sup>

Sparse Rewards: mostly zero

- Learning time <u>dominated by initial "blind Search"</u> for sparse sources of Reward
- Off-policy Methods (e.g. Q-Learning)
  - Can learn <u>passively</u> from observation
- Initial <u>Demonstration</u> from advanced (human or coded) Controller
  - Policy is learned as if it had selected the actions supplied by the external controller

## Advantage of Passive Learning

 No complete understanding of system dynamics and sensors necessary

 Only sample trajectories required

Split in 2 Phases:

- Supervised Training to start with sesible policy
- Use of supplied controller in Phase 2 as advisor



## Experiments

Real 2-wheeled Robot

2 Tasks

- Corridor Following
- Obstacle Avoidance
- 2 Supplied Controllers
  - Hard-coded
  - Human demonstration

#### Results

- Performance degrades after Supervision ends
  - Quickly recovers
  - Finds even better policy than best demonstration
- Human demonstrations are better suited
  - More Noise
  - No optimal demonstrations necessary
- Without Knowledge
  - Finding the goal once takes longer than whole training procedure



Performance in Corridor-Following Task with Human Guidance

## **RL** from Demonstration<sup>1</sup>

#### Priming of

- Q- or V-function
- Policy (Actor-Critic Model)
- World Model

Comparison in Different Environments
Pendulum Swing-up
Robot Arm Pole-balancing

<sup>1</sup> Schaal: Learning from Demonstration, NIPS 9 (1997)

#### **Experiment 1: Real Pole-balancing**

- Balance a Pole with a real Robot Arm
- Inverse Kinematics and Dynamics available
- 30 second
   Demonstration
  - Learning in one single Trial
- Without Demonstration
  - 10-20 trials necessary





## Experiment 2: Swing-up

- Value-function learning
   Primed <u>one-step Model</u> did not speed up learning
- Primed <u>Actor</u>:
  - Initial Advantage
  - Same Time necessary for convergence
- ♦ <u>Model-based</u> Learning:
  - Priming Model brings advantage (DYNA-Q "mental updates")





# Implicit Imitation<sup>1</sup>

Observation of <u>Mentor</u>

- Distribution of Search for optimal Policies
- Guide for Exploration
- Implicit Imitation
  - No replay of actions, only additional Information
  - No communication between Mentor and Observer (e.g. commercial mentors)
  - Mentor's Actions are not observeable (allows heterogeneous Mentor and Observer)

<sup>1</sup> Price, Boutilier: Accelerating Reinforcement Learning through Implicit Imitation, Journal of AI Research 19 (2003)

#### Assumptions

Full Observeability

- Own state and reward
- Mentor ´s state
- Duplication of Actions
  - Observer must be able to duplicate the Mentor's action with sequences of actions
- Similar Objectives
  - Goal of Mentor should be similar (not necessarily identical) to that of Observer

### Main Ideas of Implicit Imitation

- Observer uses Mentor Information to build a better <u>World Model</u>
  - Related to <u>Model-based RL</u>
- Calculate more <u>accurate State values</u> through better model
- Augmented Bellman Equation:
  - Consider own and Mentor ´s transition probabilities for backup

## Homogeneous Case

 Observer and Mentor have same action space
 Confidence estimation for Mentor's hints
 Estimate V<sub>mentor</sub>: Value of Mentor 's policy from observer 's perspective

Action selection:

- Either greedy action w.r.t. own V<sub>observer</sub>
- Or action most similar to best Mentor ´s action (if V<sub>mentor</sub> is higher than V<sub>observer</sub>)

Prioritized Sweeping

## Extensions

Inhomogeneous Case

- Mentor has other actions than Observer
- Feasibility Test: Can observer reproduce this state transition (otherwise ignore)

Multiple Mentors

## **Experiments and Results**

 Tested in "tricky" Grid-Worlds
 Guided agents find good policies rapidly
 Standard RL often gets stuck in Traps
 Learned policies of Observers often outperforms Mentors

No results yet with humanoid Robots

# Imitation Learning<sup>1,2</sup>

#### Other Names:

- Learning by Watching, Teaching by Showing, Learning from Demonstration
- Using <u>Demonstration</u> from Teacher to learn a Movement
  - Speed up Learning Process
  - Later: Self-Improvement (e.g. RL)
- Highly successful Area of Robot Learning
  - Amazing results for Humanoid Robots
  - One-shot Learning of Complex Movements

<sup>1</sup> Schaal: Is Imitation Learning the Route to Humanoid Robots? (1999)

2 Schaal, Ijspeert, Billard: Computational Approaches to Motor Learning by Imitation (2003)



## **Imitation Learning Components**

#### Perception:

Visual Tracking of demonstrated Movement

#### Spatial Transformation

Transformation of Coordinates

Mapping to (existing) Motor Primitives

Adjusting appropriate Primitives

- Self improvement
  - Reinforcement Learning

### **Applications of Imitation Learning**

- Humanoid Robots
- Learning of Motor Primitives
  - E.g. "Walking", "Grasping", …
- Impossible without prior Knowledge
- Also impossible to solve analytically



## Supervised Motor Learning

Optimize Parameter Vector of PolicyEvaluation Criterion

- Difficult to design
- What is the Goal?
  - Reaching final Position?
  - Reproducing the whole Trajectory?
  - Accomplishing Task in Presence of Noise?
  - Rhythmic Movement?

## Methods for Imitation

RL from Demonstration (see above)

Via-Points Learning

Spline Interpolation of Movements

Oynamical Systems

- Assuming supplied kinematic Model
- Shaping of Differential Equations to achieve desired Trajectories

### Spline-based Imitation Learning<sup>1</sup>

#### Learn <u>via-points</u> of Trajectory

 Interpolate smoothly with Splines between these points





 $^{1}$  Miyamoto, Kawato: A tennis serve and upswing learning robot based on bi-directional theory (1998)

# Adjustment of Via-points

#### ♦ <u>Trial-and-Error</u> Learning

But not real RL



 Adjust Parameters (via-point coordinates) to minimize this Error

#### Newton-like Optimization

- Estimation of Jacobi Matrix (1st partial derivations) in first Training runs
- Estimate by applying small pertubations and measuring impact on Error

## **Experiment: Tennis Serve**

- Robot Arms learns
   Tennis Serve from
   Human Demonstration
- Used ca. 20 trials to estimate Jacobian
- Learned to hit Goal reliably in 60 trials
- Limitations:
  - Pure feedforward Control



## Problems of Via-point Learning

Aims at <u>explicit Imitation</u>

- Learned policy is time-dependent
- Difficult to generalize to other Environments
- Not robust in coping with unforeseen pertubations

#### Shaping of Dynamical Systems<sup>1</sup>

- System of ordinary Differential Equations
   y is trajectory position
   g is goal (<u>Attractor</u>)
   ψ<sub>i</sub> Gaussian kernels
   x, v: internal state
- Attractor landscape can be adjusted by learning paramters w<sub>i</sub>

$$\dot{z} = \alpha_z \left( \beta_z (g - y) - z \right)$$
$$\dot{y} = z + \frac{\sum_{i=1}^N \psi_i w_i}{\sum_{i=1}^N \psi_i} v$$

$$\dot{v} = \alpha_v (\beta_v (g - x) - v)$$
$$\dot{x} = v$$

$$\psi_i = \exp\left(-\frac{1}{2\sigma_i}\left(\frac{x-x_0}{g-x_0}-c_i\right)^2\right)$$

<sup>1</sup> Ijspeert, Nakanishi, Schaal: Movement Imitation with Nonlinear Dynamical Systems in Humanoid Robots (2002) <sup>97</sup>

# Shaping of Dynamical Systems

- $\diamond$  g is a unique point <u>Attractor</u> of the system (y  $\rightarrow$  g)
- v and x define an <u>internal state</u> that generates complex Trajectories towards g
  - These Trajectories can be shaped by learning w
- Non-linear Regression Problem
  - Adjust w to embed demonstrated trajectory
  - Locally weighted Regression
- Feedback term can be added to make on-line modifications possible (see [ljspeert, et.al.])
- Policy Gradient RL can be used to refine behaviour<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> Schaal, Peters, Nakanishi, Ijspeert: Learning Movement Primitives (2004)

#### **Advantages**

Policies are <u>not time-dependent</u>

Only state-dependent

Able to learn very <u>complex</u> Movements

- Learns <u>stable</u> Policies
  - With Feedback-Term <u>robust</u> to online pertubations

Straightforward extension to <u>rhythmic</u> Movements (e.g. walking)

- Allows <u>Recognition</u> of Movements
  - Classification in Parameter Space
  - Similar Movements have similar *w* vectors

# Experiments (1)

 Evolution of a dynamical system under pertubation

Position is frozen

 System recovers from pertubation and continuous planned execution



# Experiments (2)

- Trajectory <u>Comparison</u>
   Similar Trajectories yield similar parameters
- Character Drawing
  - Measuring Correlations in five Trials
- Could be used for <u>Recognition</u>



## Experiments (3)

- Learning Tennis Swings
  Fore- and Backhand
- Trajectories translated with inverse dynamics
- Humanoid Robot can repeat Swing for unseen Ball Positions
  - Trajectories similar to human demonstrations



## **Further Results**

Imitating Rhythmic Behaviour
Tracing a figure of 8
Drumming

Simulated Biped Walking

#### **Problems of Imitation Learning**

Tracking of Demonstrations
Hidden Variables
Incompatibility Teacher – Student
Generalization vs. Mimicking
Time-dependence of learned Policy

### What else exists?

Memory-based RL
Fuzzy RL
Multi-objective RL
Inverse RL



 Could all be used for Motor Learning



## Memory-based RL

Use a <u>short-term Memory</u> to store important Observations over a long time

- Overcome Violations of Markov Property
- Avoid storing finite histories

Memory Bits [Peshkin et.al.]
 Additional Actions that change memory bits
 Long Short-Term Memory [Bakker]
 Recurrent Neural Networks

## Fuzzy RL

Learn a <u>Fuzzy Logic Controller</u> via Reinforcement Learning [Gu, Hu]

Optimize Parameters of Membership Functions and Composition of Fuzzy Rules

Adaptive Heuristic Critic Framework

## Inverse RL

#### Learn the Reward Function from observation of optimal Policy [Russell]

 Goal: Understand, which optimality principle underlies a policy



- Most algorithms need full policy (not trajectories)
- Ambiguity: Many different reward functions could be responsible for the same policy


## Multi-objective RL

#### Reward-Function is a <u>Vector</u>

- Agent has to fulfill multiple tasks (e.g. reach goal and stay alive)
- Makes design of Reward function more natural
- Algorithms are complicated and make strong assumptions
  - E.g. total ordering on reward vectors [Gabor]
  - Game theoretic Principles [Shelton]

# Agenda Motor Control Specific Problems of Motor Control Reinforcement Learning (RL) Survey of Advanced RL Techniques Existing Results Open Research Questions

# Learning of Motor Sequences

Most research in Motor Learning is concerned with learning <u>Motor Primitives</u>

Learning <u>Motor Sequences</u> is more complicated

- Smooth switching between Primitives
- Hierarchical RL

#### ♦ Examples:

- Playing a full game of Tennis
- Humanoid Robot Soccer

#### Combinations of RL Techniques

#### Explicit and Implicit Imitation

- Use Imitation Learning for a good initial policy
- Still use a Mentor for initial exploration phase

#### RL with State Prediction

 Any of the presented RL techniques could be improved by using a learned World Model for prediction of Movement Consequences

#### Non-standard Techniques

Used mostly in artificial Grid-World Domains

# Movement Understanding

Imitating a Movement makes us understand the principles of biological Motor Control better

- Recognize the Goal of the Teacher by watching a Movement
  - Inverse RL (understand Reward function)
- Recognition of Movements
  - E.g. in Dynamical Systems Context
  - Computer Vision: e.g. gesture understanding

## More Complex Behaviours

There are still a lot of possibilities

- Advanced Robots
- Biologically Inspired Robots
- More difficult Movements

Useful Robots

- Autonomous Working Robots
- Helping Robots: for old or handicapped people, children, at home, etc.

### Thank You!



### References: RL

Sutton, Barto: Reinforcement Learning: An Introduction (1998)

#### Continuous Learning:

- Coulom: Feedforward Neural Networks in RL applied to High-dimensional Motor Control (2002)
- Doya: RL in continuous Time and Space (2000)

#### Hierarchical RL:

- Dietterich: Hierarchical RL with the MAXQ Value Function Decomposition (2000)
- Kalmar, Szepeszvari, Lörincz: Module-based RL: Experiments with a real robot (1998)

### **References: Policy Gradient**

- Baird, Moore: Gradient Descent for General RL (1999)
- Baxter, Bartlett: Direct Gradient-Based RL (1999)
- Baxter, Bartlett: RL in POMDP 's via Direct Gradient Ascent (2000)
- Lawrence, Cowan, Russell: Efficient Gradient Estimation for Motor Control Learning (2003)
- Ng, Jordan: PEGASUS: A policy search method for large MDPs and POMDPs (2000)
- Ng, Kim, Jordan, Sastry: Autonomous Helicopter Flight via RL (unpublished draft)

Peters, Vijayakumar, Schaal: RL for humanoid robots (2003)

Sutton, McAllester, Singh, Mansour: Policy Gradient Methods for RL with Function Approximation (2000)

## References: Prior Knowledge

- Price, Boutilier: Accelerating RL through Implicit Imitation (2003)
- Schaal: Learning from Demonstration (1997)
- Smart, Kaelbling: Effective RL for Mobile Robots (2002)

#### **References: Imitation Learning**

- Arbib: Handbook of Brain Theory and Neural Networks, 2nd Ed. (2003)
- Ijspeert, Nakanishi, Schaal: Movement Imitation with Nonlinear Dynamical Systems in Humanoid Robots (2002)
- Ijspeert, Nakanishi, Schaal: Learning Attractor Landscapes for Learning Motor Primitives (2003)
- Miyamoto, Kawato: A tennis serve and upswing learning robot based on bidirectional Theory (1998)
- Schaal: Is Imitation Learning the Route to Humanoid Robots? (1999)
- Schaal, Ijspeert, Billard: Computational Approaches to Motor Learning by Imitation (2003)
- Schaal, Peters, Nakanishi, Ijspeert: Learning Movement Primitives (2004)

#### References: Non-standard Techniques

- Bakker: RL with Long Short-Term Memory (2002)
- Gabor, Kalmar, Szepesvari: Multi-criteria RL (1998)
- Gu, Hu: RL for Fuzzy Logic Controllers for Quadruped Walking Robots (2002)
- Peshkin, Meuleau, Kaelbling: Learning Policies with External Memory (1999)
- Russell:Learning Agents for Uncertain Environments (1998)
- Shelton: Balancing Multiple Sources of Reward in RL (2000)
- Sprague, Ballard: Multiple-Goal RL with Modular SARSA(0) (2003)