
Machine Learning

Lecture 18
Learning in Natural Language Processing

(NLP).
Methods of simulation of understanding of NL

A.V.Gavrilov
Kyung Hee University

2

Two approach to develop NLP-systems
• Syntactic-oriented

– Sequential analyzing with all stages:
• Morphologic analyzing
• Syntactic analyzing
• Semantic analyzing
• Pragmatic analyzing

• Semantic-oriented
– Recognition of semantics and pragmatics of

sentences
– Syntactic analyzing is little importance

A.V.Gavrilov
Kyung Hee University

3

Technologies of processing of NL

• Syntactic grammars
• Semantic grammars
• Extended nets of transitions
• Templates
• Case frames
• Neural networks

A.V.Gavrilov
Kyung Hee University

4

Syntactic analyzing
• A natural language grammar specifies allowable

sentence structures in terms of basic syntactic
categories such as nouns and verbs, and allows us to
determine the structure of the sentence. It is defined in a
similar way to a grammar for a programming language,
though tends to be more complex, and the notations
used are somewhat different. Because of the complexity
of natural language a given grammar is unlikely to cover
all possible syntactically acceptable sentences.

• To parse correct sentences:
– John ate the biscuit.
– The lion ate the schizophrenic.
– The lion kissed John.

• To exclude incorrect sentences:
– Ate John biscuit the.
– Schizophrenic the lion the ate.
– Biscuit lion kissed.

A.V.Gavrilov
Kyung Hee University

5

Simple context free grammar for previous
examples

• sentence --> noun_phrase, verb_phrase.
• noun_phrase --> proper_name.
• noun_phrase --> determiner, noun.
• verb_phrase --> verb, noun_phrase.
• proper_name --> [Mary].
• proper_name --> [John].
• noun --> [schizophrenic].
• noun --> [biscuit].
• verb --> [ate].
• verb --> [kissed].
• determiner --> [the].

A.V.Gavrilov
Kyung Hee University

6

To enforce subject-verb agreement the simplest
method is to add arguments to our grammar rules.

• sentence --> noun_phrase(Num), verb_phrase(Num).
• noun_phrase(Num) --> proper_name(Num).
• noun_phrase(Num) --> determiner(Num), noun(Num).
• verb_phrase(Num) --> verb(Num), noun_phrase(_).
• proper_name(sing) --> [mary].
• noun(sing) --> [lion].
• noun(plur) --> [lions].
• det(sing) --> [the].
• det(plur) --> [the].
• verb(sing) --> [eats].
• verb(plur) --> [eat].

A.V.Gavrilov
Kyung Hee University

7

To extend the grammar to allow adjectives
we need to add an extra rule or two, e.g.,

• noun_phrase(Num) --> determiner(Num),
adjectives, noun(Num).

• adjectives --> adjective, adjectives.
• adjectives --> adjective.
• adjective --> [ferocious].
• adjective --> [ugly].
• etc.
That is, noun phrases can consist of a determiner,

some adjectives and a noun. Adjectives consist
of an adjective and some more adjectives, OR
just of an adjective. We can now parse the
sentence ``the ferocious ugly lion eats Mary''.

A.V.Gavrilov
Kyung Hee University

8

Also about context free grammars
• Another thing we may need to do to our grammar is extend it so we

can distinguish between transitive verbs that take an object (e.g.,
likes) and intransitive verbs that don't (e.g., talks). (``Mary likes the
lion'' is OK while ``Mary likes'' is not. ``Mary talks'' is OK while ``Mary
talks the lion'' is not).

• Our grammar so far (if we put all the bits together) still only parses
sentences of a very simple form. It certainly wouldn't parse the
sentences I'm currently writing! We can try adding more and more
rules to account for more and more of English - for example, we
need rules that deal with prepositional phrases (e.g., ``Mary likes the
lion with the long mane''), and relative clauses (e.g., ``The lion that
ate Mary kissed John'').

• As we add more and more rules to allow more bits of English to be
parsed then we may find that our basic grammar formalism
becomes inadequate, and we need a more powerful one to allow us
to concisely capture the rules of syntax. There are lots of different
grammar formalisms that have been developed (e.g., unification
grammar, categorial grammar), but we won't go into them.

A.V.Gavrilov
Kyung Hee University

9

Grammars in Prolog
• The general formalism we have used above is based on Prolog's

built in grammar formalism, known as direct clause grammars.
Prolog allows you to write grammars directly using the notation
above, but internally in translates it into ordinary Prolog rules. A rule
such as:
– sentence --> noun_phrase, verb_phrase.

• is translated internally into a form like:
– sentence(Words, Remainder) :- noun_phrase(Words, NPRemainder),

verb_phrase(NPRemainder, Remainder).
• A grammar rule takes a list of words (or other items) as its first

argument and instantiates its second argument to the remaining
words once some of the list has been parsed using the rule. So
– ?- noun_phrase([john, hit, mary], X)

• would return X=[hit, mary].
• You shouldn't need to fully understand this internal representation

when using Prolog's grammar facilities - However, when checking
whether a sentence parses (given a grammar like the ones in the
last section) you have to give a query like the following:
– ?- phrase(sentence, [john, likes, mary]).

A.V.Gavrilov
Kyung Hee University

10

Parsing
• As an example, suppose you were trying to

parse ``John loves Mary'' given the following
grammar:

• sentence --> noun_phrase, verb_pharse.
• verb_phrase --> verb, noun_phrase.
• noun_pharse --> det, noun.
• noun_phrase --> p_name.
• verb --> [loves].
• p_name --> [john].
• p_name --> [mary].

A.V.Gavrilov
Kyung Hee University

11

Parsing (2)

sentence

noun_phrase verb_pharse

verb noun_phrase
p_name

p_name

John loves Mary

A.V.Gavrilov
Kyung Hee University

12

Parsing (3)
• You might start off expanding “sentence'' to a verb

phrase and a noun phrase. Then the noun phrase would
be expanded to give a determiner and a noun, using the
third rule. A determiner is a primitive syntactic category
(a terminal node in the grammar) so we check whether
the first word (John) belongs to that category. It doesn't -
John is a proper noun - so we backtrack and find another
way of expanding “noun_phrase'' and try the fourth rule.
Now, as John is a proper name this will work OK, so we
continue the parse with the rest of the sentence (“loves
Mary''). We haven't yet expanded verb phrase, so we try
to parse “loves Mary'' as a verb phrase. This will
eventually succeed, so the whole thing succeeds.

• It may be clear by now that in Prolog the parsing
mechanism is really just Prolog's built in search
procedure. Prolog will just backtrack to explore the
different possible syntactic structures.

A.V.Gavrilov
Kyung Hee University

13

Parsing (4)
• Simple parsers are often inefficient, because they don't

keep a record of all the bits of the sentence that have
been parsed. Using simple depth first search with
backtracking can result in useful bits of parsing being
undone on backtracking: if you have a rule ``a -> b, c, d''
and a rule ``a -> b, c, e'' then you may find the first part
of the sentence consists of ``b'' and ``c'' constituents, go
on to check if the rest is a ``d'' constituent, but when that
fails a Prolog-like system will through away its
conclusions about the first half when backtracking to try
the second rule. It will then duplicate the parsing of the
``b'' and ``c'' bits. Anyway, better parsers try to avoid
this. Two important kinds of parsers used in natural
language are transition network parsers and chart
parsers.

A.V.Gavrilov
Kyung Hee University

14

Parsing (5)
• For a parse to be useful we often want to return

the parse tree, once we've parsed the sentence.
This may then be used by a semantic
component, to help determine the meaning of
the sentence. [We sometimes do the semantic
processing at the same time as the parsing,
making this unecessary. Both approaches are
sometimes used.]

• Anyway, in Prolog we return the parse tree by
adding extra arguments to our grammar rules,
like the following:

• 3 noun_phrase(np(DetTree, NounTree)) -->
determiner(DetTree), noun(Num, NounTree).
noun(noun(banana)) --> [banana].

A.V.Gavrilov
Kyung Hee University

15

Multiple parses
• In general, as discussed earlier, there may be many different parses

for a complex sentence, as the grammar rules and dictionary allow
the same list of words to be parsed in several different ways. A
commonly cited example is the pair of sentences:

• Time flies like an arrow.
• Fruit flies like a banana.
• “Flies'' can be either a verb and a noun, while ``likes'' can be either a

verb and a preposition (or whatever). So, in the first sentence
``Time'' should be the noun phrase and ``flies like an arrow'' to be
the verb phrase (with ``like an arrow'' modifying flies). In the second
sentence ``Fruit flies'' should be the noun phrase and “like a
banana'' to be the verb phrase. Now, WE know which is the ``right''
parse because we know that there is no such thing as a “time fly''
and it would be a bit strange to “fly like a banana''. But without such
general knowledge about word meanings we coudn't tell which
parse is correct, so a parser, with no semantic component, should
return both parses, and leave it up to the semantic stage of analysis
to throw out the bogus one.

A.V.Gavrilov
Kyung Hee University

16

Disadvantages of syntactic analyzing

• For real natural language grammar
became very large

• Difficulties to implement of analyzing of
ambiguities and using of context

• Often correct recognized structure hasn’t
sense and vise versa

Conclusion:
Syntactic-oriented analyzing is not

perspective approach

A.V.Gavrilov
Kyung Hee University

17

Semantic grammars
• Deal with words-parts (categories) of

language but with parts (concepts) of
domain

Example of grammar:

S → <present> the <attribute> of <ship>
<present> → what is | [can you] tell me
<ship> → the <shipname> | <classname> class ship

Can you tell me the class of the Enterprise? (Enterprise
- name of ship).

A.V.Gavrilov
Kyung Hee University

18

Disadvantages of semantic
grammars

• For real world grammar became very large

Conclusion:
Semantic grammar may be used in enough

special domain (for example, for different
referral services)

A.V.Gavrilov
Kyung Hee University

19

Transition networks
• Based on states and transitions between them
• Transitions are executed when determined class of

words is read in sentence (in nodes any test is executed,
result of it is selection of transition)

• Results of test stores as any information about
recognized words for later analyzing
– Subject
– Object
– Verb
– Kind of sentence (declarative, question, order and so on)
– And so on

A.V.Gavrilov
Kyung Hee University

20

Example of analyzing

• “The rabbit nibbles the carrot” is recognized by this
graph
– Result of testing of “The rabbit” is transition 2 and storing of

subject=the rabbit, kind of sentence=declarative
– result of testing of “nibbles” is transition 4 and storing

verb=nibbles
– Result of testing of “the carrot” is transition 6 and storing of

object=the carrot

A.V.Gavrilov
Kyung Hee University

21

Disadvantages
• Non modularity
• Difficulties at modifications
• Too sensitivity to incorrect sentences

(mistake in sentence does impossible
continue analyzing)

• Sometimes result of analyzing of correct
sentence has not sense

A.V.Gavrilov
Kyung Hee University

22

Templates
• This is first method for dialog programs

(implemented in Eliza)
• Based on matching of sentence (pattern) with

templates
• Template includes answer – response on

sentence
• Template can to include words of NL (key

words) and variables (during matching any
words from sentence may be assigned to
variables)

• Values of variables may be used in responses

A.V.Gavrilov
Kyung Hee University

23

A typical conversation with ELIZA is the
following:

• C: Well, my boyfriend made me come here.
• R: Your boyfriend made you come here.
• C: I am unhappy.
• R: Do you think coming here will help you not to be unhappy?
• C: I need some help, that much seems certain.
• R: What would it mean to you if you got some help?
• C: Perhaps I could learn to get along with my mother.
• R: Tell me more about your family.
• C: You are like my father in some ways.
• R: What resemblance do you see?
• C: My father is afraid of everybody.
• R: What else comes to mind when you think of your father.
• C: Bullies.
• R: Does that have anything to with the fact that your boyfriend
made you come here?

A.V.Gavrilov
Kyung Hee University

24

Program Elizabeth

A.V.Gavrilov
Kyung Hee University

25

Examples of templates for program ALICE
(language AIML)

• <category>
• <pattern>YES</pattern>
• <template>Ok. Next question? </template>
• </category>
• <category>
• <pattern>WHY *</pattern>
• <template>
• <random>
• I wonder myself.
• Yes, why?
• </random>
• </template>
• </category>

A.V.Gavrilov
Kyung Hee University

26

Case frames
• Structure of case

frame:
– Verb – name of

frame
– Roles:

• Agent
• Object
• Tool
• Recipient
• Direction
• Place
• Coagent

Example:
• Give

– Role:
» Agent: John
» Object: ball
» Recipient: Mary

– Gram:
» Time: past
» Voice: active

Roles may be obligatory and not
obligatory

A.V.Gavrilov
Kyung Hee University

27

Analyzing with case frames
1. Select main verb from sentence or context
2. Select for this verb corresponding frame
3. Matching of words in sentence and obligatory roles in

frame. If not all obligatory roles are found in sentence
or context, then try find another frame and repeat step
3. If another frame is not found, analyzing of sentence
is impossible

4. Matching of words in sentence and not obligatory roles
in frame.

5. If after that there are not analyzed words in sentence,
then may be one of different strategies:

1. Ignore of these words and successful finish analyzing
2. To try continue analyzing by other ways
3. To finish analyzing as fail

A.V.Gavrilov
Kyung Hee University

28

Pragmatics
• Pragmatics is the last stage of analysis, where the

meaning is elaborated based on contextual and world
knowledge. Contextual knowledge includes knowledge
of the previous sentences (spoken or written), general
knowledge about the world, and knowledge of the
speaker.

• One important task at this stage are to work out referents
of expressions. For example, in the sentence ``he kicked
the brown dog'' the expression ``the brown dog'' refers to
a particular brown dog (say, Fido). The pronoun ``he''
refers to the particular guy we are talking about (Fred). A
full representation of the meaning of the sentence should
mention Fido and Fred.

A.V.Gavrilov
Kyung Hee University

29

Pragmatics (2)
• We can often find this out by looking at the previous sentence, e.g.:

– Fred went to the park.
– He kicked the brown dog.

• We can work out from this that ``he'' refers to Fred. We might also
guess that the brown dog is in the park, but to work out that we
mean Fido we'd need some extra general or contextual knowledge -
that the only brown dog that generally frequents the park is Fido. In
general this kind of inference is pretty difficult, though quite alot can
be done using simple strategies, like looking at who's mentioned in
the previous sentence to work out who ``he'' refers to. Of course,
sometimes there may be two people (or two dogs) that the speaker
might be referring to, e.g.,
– There was a brown dog and a black dog in the park. Fred went to the

park with Jim. He kicked the dog.
• In cases like this we have referential ambiguity. It is seldom quite as

explicit as this, but in general can be a big problem. When the
intended referent is unclear a natural language dialogue system may
have to initiate a clarification subdialogue, asking for example ``Do
you mean the black one or the brown one.''.

A.V.Gavrilov
Kyung Hee University

30

Pragmatics (3)
• Anyway, another thing that is often done at this stage of

analysis (pragmatics) is to try and guess at the goals
underlying utterances. For example, if someone asks
how much something is you generally assume that they
have the goal of (probably) buying it. If you can guess at
people's goals you can be a bit more helpful in
responding to their questions. So, an automatic airline
information service, when asked when the next flight to
Paris is, shouldn`t just say ``6pm'' if it knows the flight is
full. It should guess that the questioner wants to travel on
it, check that this is possible, and say ``6pm, but it's full.
The next flight with an empty seat is at 8pm.''

