Appendix 1 to Lecture 18 of "Machine Learning" Inductive Learning Algorithms for Text Classification

Susan Dumais David Heckerman Eric Horvitz John Platt *(Microsoft Research)* Mehran Sahami *(Stanford Univ)*

Berkeley March 13, 1998

Road Map

*Text Classification Basics
Inductive Learning Methods
*Reuters Results
*Future Plans

Text Classification - Basics

Text Classification - put objects into groups, using textual descriptions
#Examples:

- <u>Text Categorization</u> assign documents to one or more of a predefined set of categories
- Text Retrieval distinguish items that are relevant/non_relevant to user's query
- Text Discovery discovery of groupings (e.g., clusters) and other patterns in data

Text Categorization - Applications

#Sorting new items into existing structures (e.g., email folders, general file system, site ontologies, objectionable vs. not) **Routing user's requests #**Topic specific processing Structured browsing & search **H**Information filtering/push **#**Dynamic interests

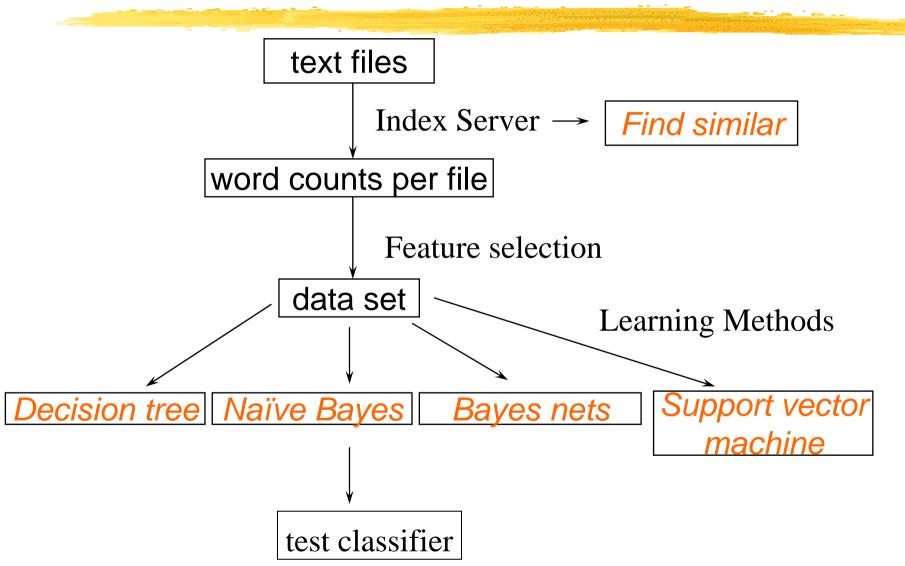
Text Classification - Methods

Human classifiers (e.g., Dewey, LC, MeSH, Yahoo!, CyberPatrol)

Hand-crafted knowledge engineered systems (e.g., CONSTRUE)

✓Inductive learning methods
△(Semi-) automatic classification

Text Classification Process



Learning Methods

#A classifier is a function: $f(\mathbf{x}) = p(class)$

 \land from attribute vectors, $\mathbf{x} = (x_1, x_2, \dots, x_d)$

#Example classifiers

○ (interest AND rate) OR (quarterly) -> "interest"

 \bigtriangleup score = 0.3*interest + 0.4*rate + 0.1*quarterly;

if score > .8, then "interest" category

Inductive Learning Methods

Supervised learning to build classifiers

- △Labeled training data (i.e., examples of items in each category)
- "Learn" classifier
- Test effectiveness on new instances
- Statistical guarantees of effectiveness

Inductive Learning Methods

#Classifiers easy to construct and update #Requires only subject knowledge ("I know it when I see it")

- Customizable for individual's categories and tasks
- ∺Graded estimates of category membership allow for tradeoffs between precision and recall, depending on task

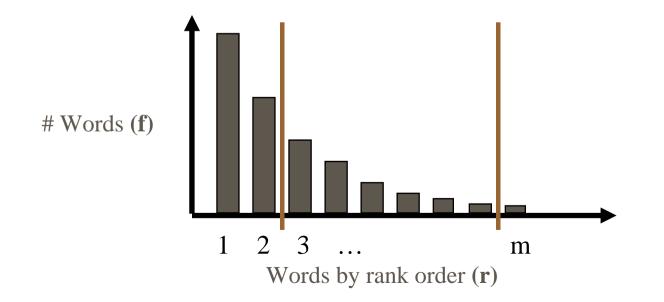
Text Representation

℅Vector space representation of documents word1 word2 word3 word4 ... Doc 1 = <1, 0, 3, 0, ... > Doc 2 = <0, 1, 0, 0, ... > Doc 3 = <0, 0, 0, 5, ... > ℅Mostly use: simple words, binary weights

#Text can have 10⁷ or more dimensions e.g., 100k web pages had 2.5 million distinct words

Feature Selection

Word distribution - remove frequent and infrequent words based on Zipf's law: frequency * rank ~ constant



Feature Selection (cont'd)

#*Fit to categories* - use mutual information to select features which best discriminate category vs. not $MI(x,C) = \sum p(x,C)\log(\frac{p(x,C)}{p(x)p(C)})$ **#***Designer features* - domain specific, including non-text features

✓Use 100-500 best features from this process as input to learning methods

Inductive Learning Methods

Find Similar
Decision Trees
Naïve Bayes
Bayes Nets
Support Vector Machines (SVMs)

∺All support:

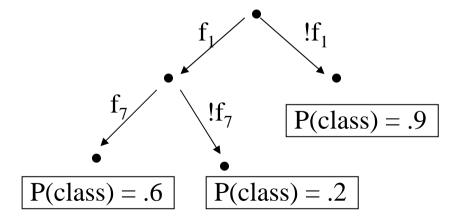
Probabilities" - graded membership; comparability across categories
 Adaptive - over time; across individuals

#Aka, relevance feedback #Rocchio $W_{j} = \beta \sum_{i \notin rel} \frac{x_{i,j}}{n} - \gamma \sum_{i \notin non rel} \frac{x_{i,j}}{N-n}$

Classifier parameters are a weighted combination of weights in positive and negative examples -- "centroid"
KNew items classified using: Σ_j w_j ·x_j
Use all features, idf weights, γ = 0

Decision Trees

Learn a sequence of tests on features, typically using top-down, greedy search Binary (yes/no) or continuous decisions

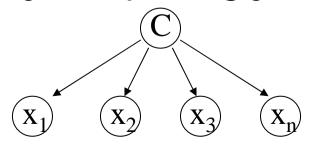


Naïve Bayes

#Aka, binary independence model
#Maximize: Pr (Class | Features)

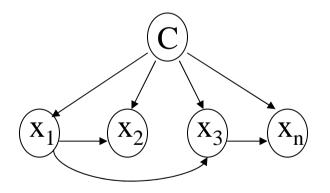
 $P(class \mid \vec{x}) = \frac{P(\vec{x} \mid class) \cdot P(class)}{P(\vec{x})}$

Assume features are conditionally independent
math easy; surprisingly effective



Bayes Nets

Maximize: Pr (Class | Features)
Boos not assume independence of features - dependency modeling

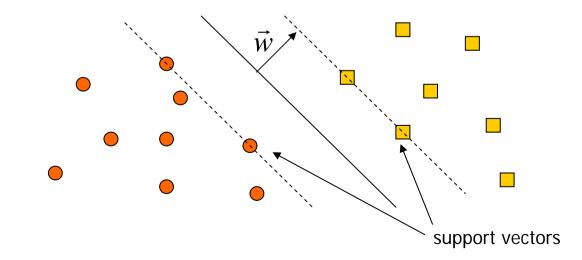


Support Vector Machines

₭ Vapnik (1979)

#Binary classifiers that maximize margin

☐ Find hyperplane separating positive and negative examples ☐ Optimization for maximum margin: $\min \|\vec{w}\|^2$, $\vec{w} \cdot \vec{x} - b \ge 1$, $\vec{w} \cdot \vec{x} - b \le -1$ ☐ Classify new items using: $\vec{w} \cdot \vec{x}$



Support Vector Machines

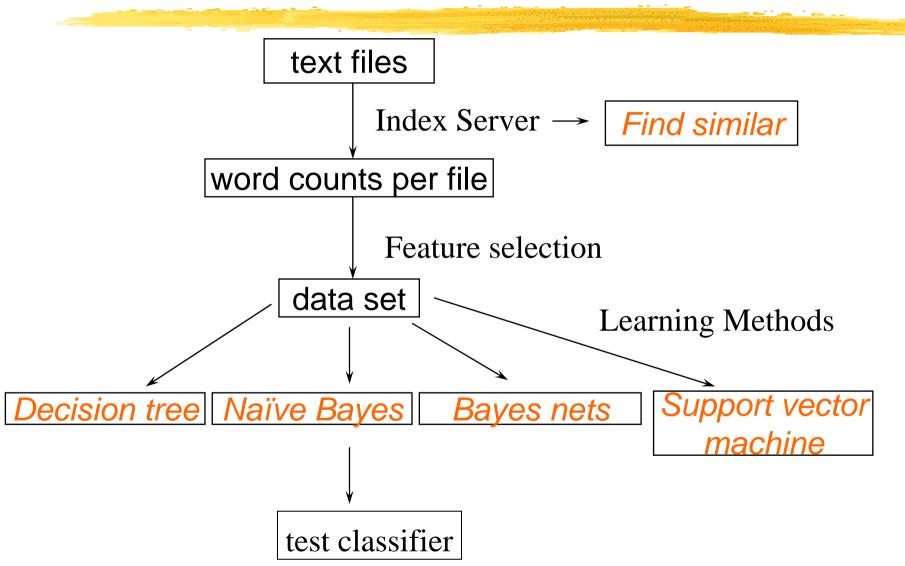
#Extendable to:

Non-separable problems (Cortes & Vapnik, 1995)

△Non-linear classifiers (Boser et al., 1992)

- **#**Good generalization performance
 - ○OCR (Boser et al.)
 - ✓Vision (Poggio et al.)
 - △Text classification (Joachims)

Text Classification Process



Reuters Data Set (21578 - ModApte split)

₩9603 training articles; 3299 test articles

% Example "interest" article

2-APR-1987 06:35:19.50

west-germany

b f BC-BUNDESBANK-LEAVES-CRE 04-02 0052

FRANKFURT, March 2

The Bundesbank left credit policies unchanged after today's regular meeting of its council, a spokesman said in answer to enquiries. The West German discount rate remains at 3.0 pct, and the Lombard emergency financing rate at 5.0 pct.

REUTER

₭ Average article 200 words long

Reuters Data Set (21578 - ModApte split)

%118 categories

△An article can be in more than one category

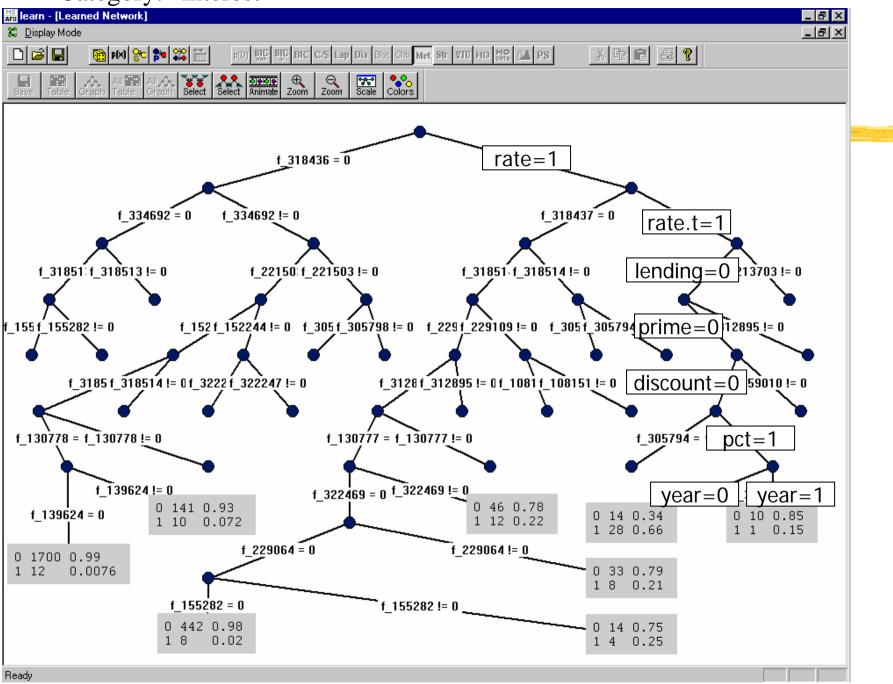
△Learn 118 binary category distinctions

#Most common categories (#train, #test)

- Earn (2877, 1087)
- Acquisitions (1650, 179)
- Money-fx (538, 179)
- Grain (433, 149)
- Crude (389, 189)

- Trade (369,119)
- Interest (347, 131)
- Ship (197, 89)
 - Wheat (212, 71)
 - Corn (182, 56)

Category: "interest"



Category: Interest

#Example SVM features - \vec{w}

- 0.70 prime
- 0.67 rate
- 0.63 interest
- 0.60 rates
- 0.46 discount
- 0.43 bundesbank
- 0.43 baker

- -0.71 dlrs
- -0.35 world
- -0.33 sees
- -0.25 year
- -0.24 group
- -0.24 dlr
- -0.24 january

Accuracy Scores

#Based on contingency table

	Truth: Yes	Truth: No
System: Yes	а	b
System: No	С	d

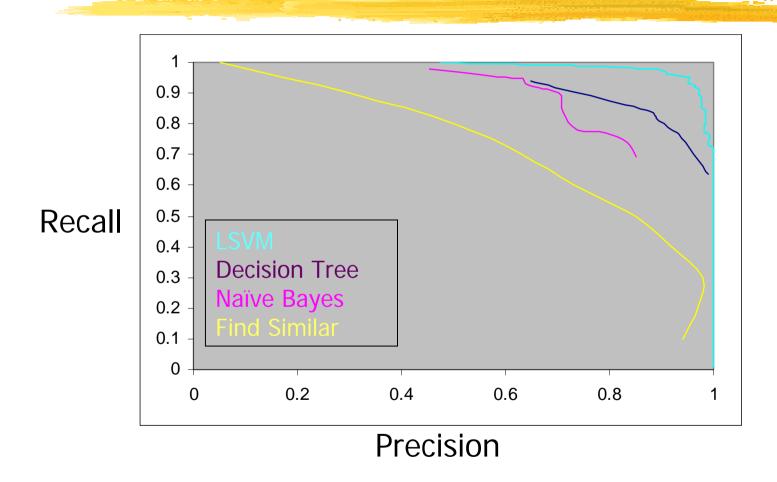
#Effectiveness measure for binary classification

Reuters - Accuracy ((R+P)/2)

	Findsim	NBayes	BayesNets	Trees	LinearSVM
earn	92.9%	95.9%	95.8%	97.8%	98.2%
acq	64.7%	87.8%	88.3%	89.7%	92.8%
money-fx	46.7%	56.6%	58.8%	66.2%	74.0%
grain	67.5%	78.8%	81.4%	85.0%	92.4%
crude	70.1%	79.5%	79.6%	85.0%	88.3%
trade	65.1%	63.9%	69.0%	72.5%	73.5%
interest	63.4%	64.9%	71.3%	67.1%	76.3%
ship	49.2%	85.4%	84.4%	74.2%	78.0%
wheat	68.9%	69.7%	82.7%	92.5%	89.7%
corn	48.2%	65.3%	76.4%	91.8%	91.1%
Avg Top 10	64.6%	81.5%	85.0%	88.4%	91.4%
Avg All Cat	61.7%	75.2%	80.0%	na	86.4%

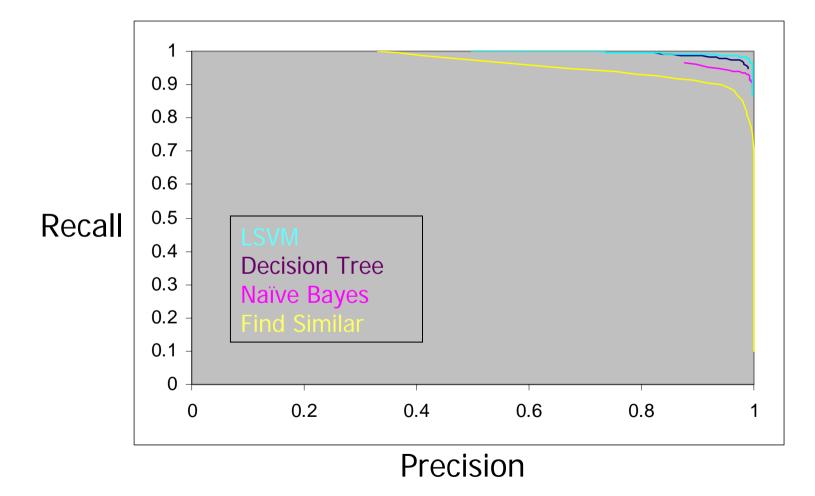
Recall: % labeled in category among those stories that are really in category **Precision:** % really in category among those stories labeled in category **Break Even:** (Recall + Precision) / 2

Reuters ROC - Category Grain

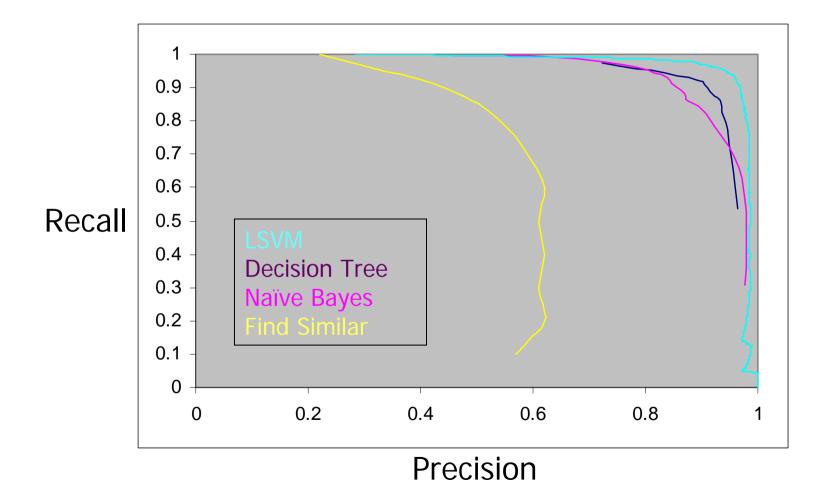


Recall: % labeled in category among those stories that are really in category **Precision:** % really in category among those stories labeled in category

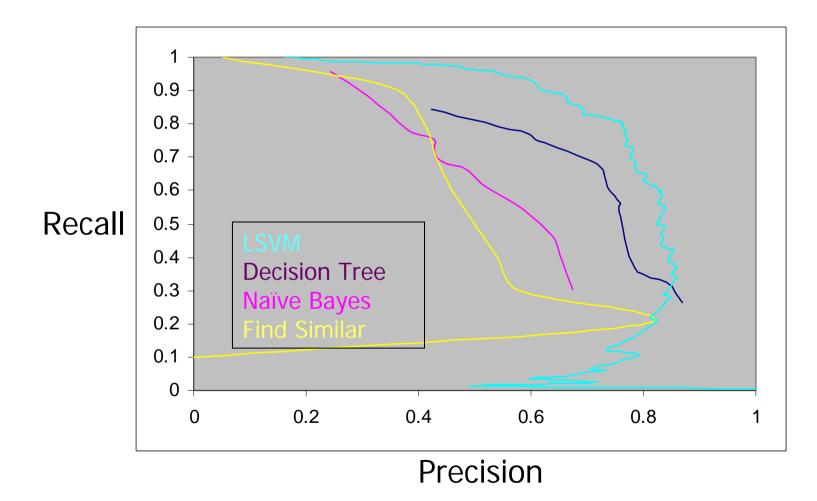
ROC for Category - Earn



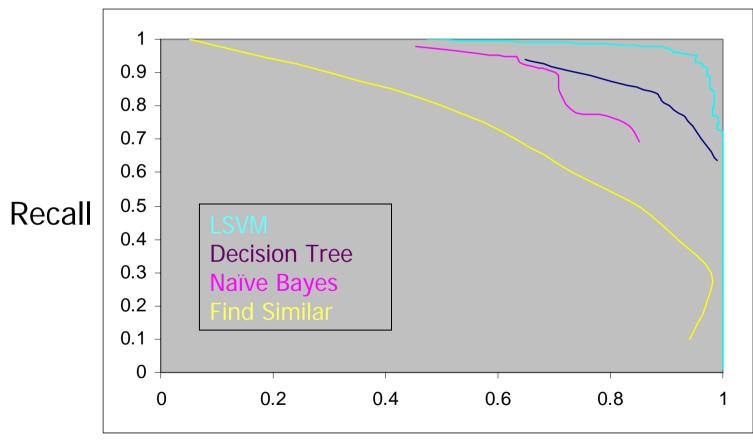
ROC for Category - Acquisitions



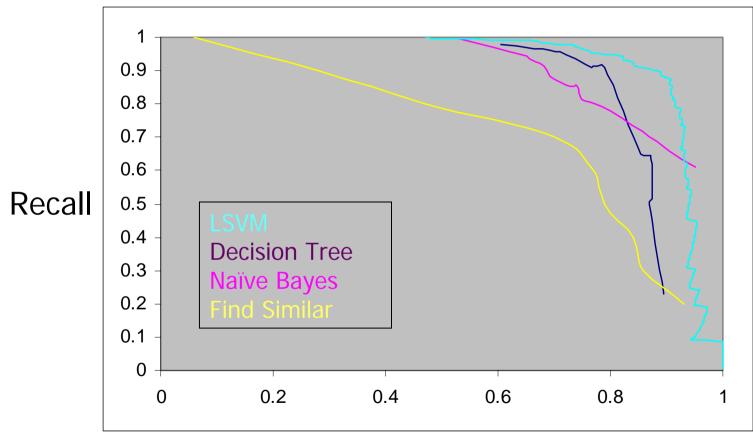
ROC for Category - Money-Fx



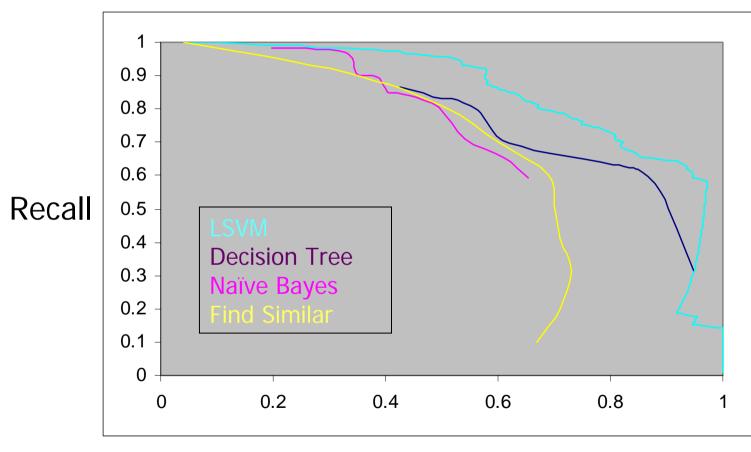
ROC for Category - Grain



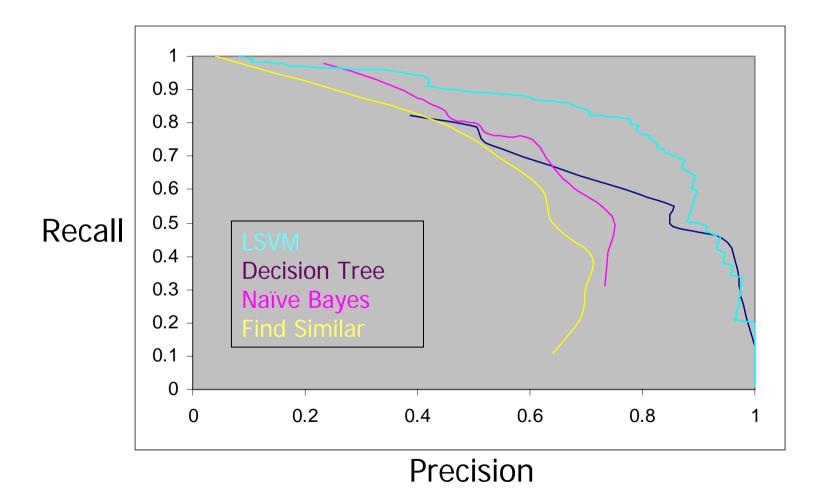
ROC for Category - Crude



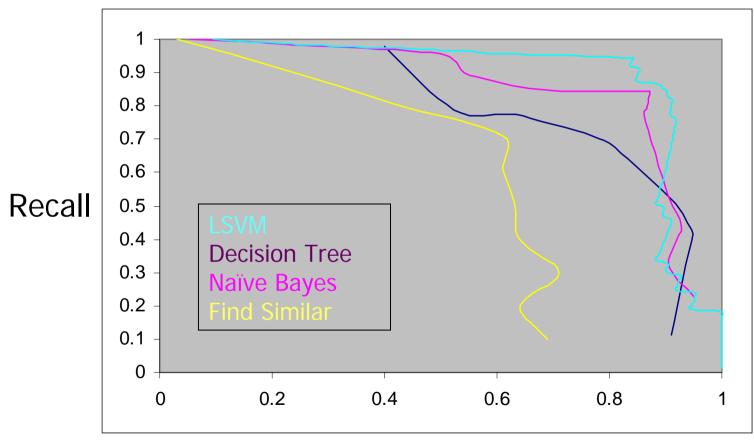
ROC for Category - Trade



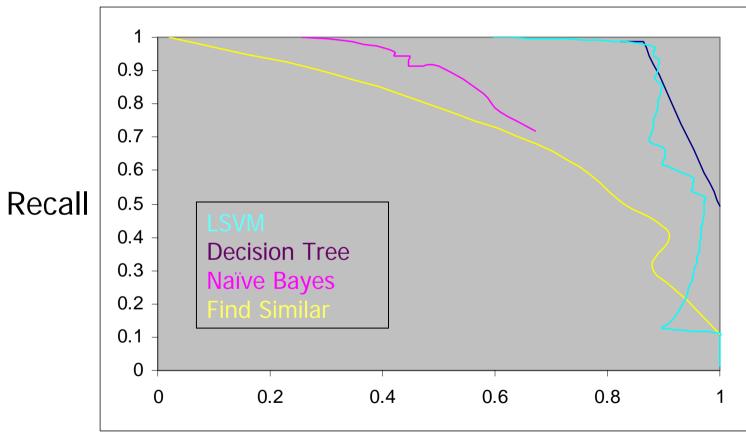
ROC for Category - Interest



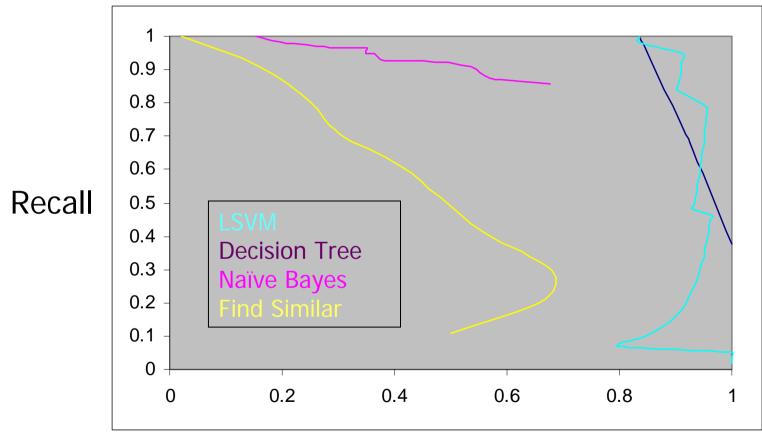
ROC for Category - Ship



ROC for Category - Wheat



ROC for Category - Corn



Reuters - Sample Size (SVM)

		100%		10%		5%		1%	
	category	samp sz	(p+r)/2						
	0-acq	2876	98.3%	281	97.8%	145	97.4%	35	93.6%
	1-earn	1650	97.0%	162	94.6%	80	90.4%	14	65.6%
sample	3-money-fx	538	80.2%	55	66.3%	28	63.9%	3	41.9%
set	4-grain	433	95.9%	46	91.5%	21	87.0%	3	50.3%
Set	5-crude	389	90.4%	45	82.9%	18	76.9%	3	??
1	6-trade	369	80.9%	40	78.2%	21	76.4%	2	12.0%
I	7-interest	347	79.9%	32	68.4%	17	55.3%	2	50.8%
	8-ship	197	85.5%	20	57.4%	11	53.9%	2	??
	9-wheat	212	92.5%	24	84.8%	11	65.7%	2	50.7%
	10-corn	182	93.0%	23	78.2%	9	60.3%	1	50.9%
	microtop10		93.9%		89.7%		86.0%		70.3%

		100%		10%		5%		1%	
	category	samp sz	(p+r)/2						
	0-acq	2876	98.3%	264	97.6%	139	97.3%	26	94.6%
ple	1-earn	1650	97.0%	184	94.1%	79	90.6%	16	73.5%
1	3-money-fx	538	80.2%	62	72.9%	29	71.0%	5	49.9%
t	4-grain	433	95.9%	40	85.8%	28	88.6%	7	76.5%
	5-crude	389	90.4%	35	81.6%	15	65.6%	2	??
	6-trade	369	80.9%	41	80.1%	22	72.7%	5	51.6%
	7-interest	347	79.9%	30	71.8%	15	63.0%	3	45.1%
	8-ship	197	85.5%	21	62.8%	10	54.5%	2	50.6%
	9-wheat	212	92.5%	19	80.1%	15	80.1%	5	68.3%
	10-corn	182	93.0%	16	76.6%	11	69.6%	4	43.4%
	microtop10		93.9%		89.6%		86.4%		75.5%

samp set 2

Reuters - Other Experiments

Simple words vs. NLP-derived phrases

► NLP-derived phrases

≤ factoids (April_8, Salomon_Brothers_International)

Image: Imag

⊠noun phrases (first_quarter, modest_growth)

△No advantage for Find Similar, Naïve Bayes

△Need to try w/ SVM

Binary vs. 0/1/2 features

△No advantage of 0/1/2 for Decision Trees

△Need to try w/ SVM

Reuters Summary

Accurate classifiers can be learned
automatically from training examples

- Linear SVMs provide very good classification accuracy
 - Better than best previously reported results for this test collection
- ₩idely applicable, flexible, and adaptable representations

Text Classification Horizon

%Text representation enhancements for
SVM model

- **#**Use of hierarchical category structure
- Bynamic interests
 Bynami
- **#**A range of applications
- **#**UI for (semi-) automatic classification

