
Machine Learning

Lecture 17
Long-Short Term Memory (LSTM)

Overview of LSTM

• Replace sigmoidal unit with linear unit
• Error flows through linear unit does not

decay
• But error flow would very often diverge
• Surround linear unit with multiplicative

gates to allow greater control over flow of
information.

• Using gates, possible to have stable
constant error flow

Building LSTM...
other units in network
blah b

Start with standard
recurrent neural
network

An Input Gate lets LSTM
selectively process
incoming information

Building LSTM...
other units in network
blah b

Start with standard
recurrent neural
network

An Input Gate lets LSTM
selectively process
incoming information

Building LSTM...
other units in network
blah b

Start with standard
recurrent neural
network

An Input Gate lets LSTM
selectively process
incoming information

An Output Gate allows
units to selectively
take themselves offline

Start with standard
recurrent neural
network

An Input Gate lets LSTM
selectively process
incoming information

An Output Gate allows
units to selectively
take themselves offline

Forget Gate enables a
block to empty its own
memory contents

An Input Gate lets LSTM
selectively process
incoming information

An Output Gate allows
units to selectively
take themselves offline

A Forget Gate enables
units to empty their
own memory contents

An Input Gate lets LSTM
selectively process
incoming information

An Output Gate allows
units to selectively
take themselves offline

A Forget Gate enables
units to empty their
own memory contents

An Input Gate lets LSTM
selectively process
incoming information

The resulting structure is
called an LSTM Block

The resulting structure is
called an LSTM Block

The resulting structure is
called an LSTM Block

Self-recurrent
connections for hidden
units fixed at +1.0

The resulting structure is
called an LSTM Block

Self-recurrent
connections for hidden
units fixed at +1.0

The resulting structure is
called an LSTM Block

Self-recurrent
connections for hidden
units fixed at +1.0

Units are not squashed
(“Linear States”)

The resulting structure is
called an LSTM Block

Self-recurrent
connections for hidden
units fixed at +1.0

Units are not squashed
(“Linear States”)

Input Gate

)(

,

inin

m
m

minin

netfact

actwnet

=

∑=

LSTM Forward Pass

)(ˆ

,

cellinfgt

m
m

mcellcell

netfactsacts

actwnet

+=

∑=
Cell State

sactact outcell =
Cell Activation

)(

,

fgtfgt

m
m

mfgtfgt

netfact

actwnet

=

∑=
Forget Gate

)(

,

outout

m
m

moutout

netfact

actwnet

=

∑=
Output Gate

LSTM Backward Pass

Output gate uses
standard backprop

Cell states, forget
gates and input gates
use Real Time
Recurrent Learning
(RTRL)-style partial
derivative tables

Output Gate Error (BP) ()kk kc

S

v coutoutout v
j

j
v
jjjj

wszf δδ ∑∑ =
′=

1
)(

Compute errors and partials

LSTM Backward Pass

Cell State Error (BP) ()kk kcouts v
jjv

jc
wye δ∑=

mincfgt
jv

cm
jv

cm yyzgydSdS
j

v
jj

ˆ)(′+=Cell State Partials (RTRL)

minincfgt
jv

min
jv

min yzfzgydSdS
jj

v
jj

ˆ)()(,, ′+=Input Gate Partials (RTRL)

Forget Gate Partials (RTRL)
mfgtfgtcfgt

jv
mfgt

jv
mfgt yzfsydSdS

jjv
jj

ˆ)(ˆ,, ′+=

Compute weight changes

• Weight changes into output gate proportional to output gate delta

• Weight changes into cell, input gate, forget gate proportional to partials

Connectivity

• Recurrent connections
back into gates and
cells very useful

• Additional feed-forward
layers are useful

• Additional LSTM layers
probably not useful:
gradient truncated

Speech Recognition

• NNs already show promise (Boulard,
Robinson, Bengio)

• LSTM may offer a better solution by
finding long-timescale structure in speech

• At least two areas where this may help:
– Time warping (rate invariance)
– Dynamic, learned model of phoneme

segmentation (with little apriori knowledge)

Speech Set 1: Spoken Digits

• Mus Silicum Competition
(Brody and Hopfield)

• 500 input files, each a
spoken digit “one”
through “ten”

• Very compressed
representation:
– 40 spike trains having

either one or zero spikes
per train

– Spikes mark onsets, peaks
or offsets for 40 different
frequencies (100Hz to
5kHz)

Mus Silicium Task A: Identification of digits

• Learn synchrony-based model of digit prediction
• Perform predictions online
• Training set n=300, testing=200

– Error=false negs/npos + false pos/nneg

• Maass et.al. SNN-type Generic Neural
Microcircuits mean 0.14, best 0.013

• LSTM mean 0.03, best 0.0 (over 25 runs)
• LSTM synchronizes internal states to spike

onsets

Task B: Identification of “one” from single example

• Competition task (Hopfield and Brody)
– 1 positive example of “one”
– 9 randomly generated negative examples
– Predict “one” or “not one” for dataset of size

500
• Best in competition err=0.23
• Hopfield and Brody err=0.14
• LSTM best error=0.14

(mean over 15 runs=0.26)

Discussion
• LSTM networks much smaller

– Hopfield and Brody: ~=5600 units
– Maass: 135 units
– LSTM: 50 units (10 gated blocks with 2 cells each

yielding 30 gating units and 20 states)
• LSTM exhibited desired “online prediction”
• LSTM outperformed contest entrants and

matched performance of Hopfield and Brody.
• By using synchrony-like mechanism, LSTM

generalizes well and copes with timewarping

Speech Set 2: Phoneme Identification

• “Numbers 95” database. Numeric street
addresses and zip codes (collaborator:
Bengio)

• 13 MFCC values plus first derivative = 26
inputs

• 27 possible phonemes
• ~=4500 sentences

~=77000 phonemes
~= 666,000 10ms frames

Task A: Single phoneme identification

• Categorize phonemes in isolation.
• Prediction made only at last time step
• LSTM has no advantage because no

history
• Benchmark ~=92% correct (S. Bengio)
• LSTM ~= 85%*

Task B: frame-level phoneme recognition

• Assign all frames to one of 27 phonemes.
• Use entire sentence
• For later phonemes, history can be exploited
• Benchmark ~= 80%
• LSTM ~= 78%*

State trajectories suggest a use of history.

Alternatives to standard RNNs
• Architectual Changes to RNNs:

– Time windows: Moving buffer over input time series
– TDNNs: Delayed flow of information through net with cascaded internal delays (Haffner & Waibel)
– Focused Backprop: Delay update of activations (Mozer, also deVries & Principe)
– NARX: Multiple input time windows (“embedded memories”) shortcut error flow (Lin et al)
– Reuse activations: Update using scaled sum of old act new input (Sun)
– Hierarchical RNNs: Organization time delays hierarchically: (El Hihi et. al.)
– Dynamic allocation : When a unit receives conflicting error signals, add new unit (Ring)

• Alternative Search Methods for RNNs:
– Weight guessing: Works only for easy problems (Hochreiter)
– Search without gradients: Propagate discrete error (Bengio et. al.)
– Simulated annealing : Controlled use of noise (Bengio for this specific issue)
– Genetic approaches: (Angeline et. al.)
– Second-order methods: Pseudo-Newton methods, Kalman Filters, Particle Filters

• Non-RNN Approaches:
– IO-HMMs: Discrete networks trained with EM (Bengio & Frasconi).
– Spiking Neural Networks: Use synchrony as latching mechanism.
– Hidden Markov Models : Non-ergodic transition diagrams allow, e.g, left-to-right flow.

