Machine Learning

Lecture 17
Long-Short Term Memory (LSTM)




Overview of LSTM
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LSTM Forward Pass
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LSTM Backward Pass
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LSTM Backward Pass

Compute errors and partials

S.
Output Gate Error (BP) =1 (Zoutj) E S ka
o J
Cell State Error (BP) = You ; (E - chv_5k )

Cell State Partials (RTRL) dSCJV dS‘Vyfgt +J (Z )ym ym

Input Gate Partials (RTRL) dSIf,'Vm dSJmefgt —I—g(Z )fm (ZIn )ym
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Compute weight changes
 Weight changes into output gate proportional to output gate delta

 Weight changes into cell, input gate, proportional to partials




Connectivity

e Recurrent connections
back into gates and
cells very useful

e Additional feed-forward
layers are useful

o Additional LSTM layers
probably not useful:
gradient truncated




Speech Recognition

 NNs already show promise (Boulard,
Robinson, Bengio)

 LSTM may offer a better solution by
finding long-timescale structure in speech

« At least two areas where this may help:

— Time warping (rate invariance)

— Dynamic, learned model of phoneme
segmentation (with little apriori knowledge)




Speech Set 1: Spoken Digits

Mumber "Cne"

e Mus Silicum Competition
(Brody and Hopfield)

e 500 input files, each a
spoken digit “one”
through “ten”

 Very compressed
representation:

— 40 spike trains having
either one or zero spikes
per train

— Spikes mark onsets, peaks
or offsets for 40 different
frequencies (100Hz to
5kHz)
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Mus Silicium Task A: Identification of digits

Learn synchrony-based model of digit prediction
Perform predictions online

Training set n=300, testing=200

— Error=false negs/n,, + false pos/n

Maass et.al. SNN-type Generic Neural
Microcircuits mean 0.14, best 0.013

LSTM mean 0.03, best 0.0 (over 25 runs)

LSTM synchronizes internal states to spike
onsets

neg




Task B: ldentification of “one” from single example

e Competition task (Hopfield and Brody)
— 1 positive example of “one”
— 9 randomly generated negative examples

— Predict “one” or “not one” for dataset of size
500

e Best in competition err=0.23
 Hopfield and Brody err=0.14

e LSTM best error=0.14
(mean over 15 runs=0.206)




Discussion

LSTM networks much smaller
— Hopfield and Brody: ~=5600 units
— Maass: 135 units

— LSTM: 50 units (10 gated blocks with 2 cells each
yielding 30 gating units and 20 states)

LSTM exhibited desired “online prediction”

LSTM outperformed contest entrants and
matched performance of Hopfield and Brodly.

By using synchrony-like mechanism, LSTM
generalizes well and copes with timewarping




Speech Set 2: Phoneme Identification

“Numbers 95” database. Numeric street
addresses and zip codes (collaborator:
Bengio)

13 MFCC values plus first derivative = 26
Inputs

27 possible phonemes

~=4500 sentences

~=77000 phonemes
~= 666,000 10ms frames
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Task A: Single phoneme identification

e Categorize phonemes in isolation.
Prediction made only at last time step

_STM has no advantage because no
nistory

Benchmark ~=92% correct (S. Bengio)
LSTM ~= 85%*




Task B: frame-level phoneme recognition

« Assign all frames to one of 27 phonemes.
Use entire sentence

For later phonemes, history can be exploited
Benchmark ~= 80%

LSTM ~= 78%*
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LSTM Linear States

Output Predictions

output units
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State trajectories suggest a use of history.




Alternatives to standard RNNs

Architectual Changes to RNNs:
Time windows: Moving buffer over input time series
TDNNSs: Delayed flow of information through net with cascaded internal delays (Haffner & Waibel)
Focused Backprop: Delay update of activations (Mozer, also deVries & Principe)
NARX: Multiple input time windows (“embedded memories”) shortcut error flow (Lin et al)
Reuse activations: Update using scaled sum of old act new input (Sun)
Hierarchical RNNs: Organization time delays hierarchically: (El Hihi et. al.)
Dynamic allocation : When a unit receives conflicting error signals, add new unit (Ring)
Alternative Search Methods for RNNSs:
Weight guessing: Works only for easy problems (Hochreiter)
Search without gradients: Propagate discrete error (Bengio et. al.)
Simulated annealing : Controlled use of noise (Bengio for this specific issue)
Genetic approaches: (Angeline et. al.)
Second-order methods: Pseudo-Newton methods, Kalman Filters, Particle Filters
Non-RNN Approaches:
- |O-HMMs: Discrete networks trained with EM (Bengio & Frasconi).
— Spiking Neural Networks: Use synchrony as latching mechanism.
- Hidden Markov Models : Non-ergodic transition diagrams allow, e.g, left-to-right flow.




