
Machine Learning

Lecture 17
Long-Short Term Memory (LSTM)



Overview of LSTM

• Replace sigmoidal unit with linear unit
• Error flows through linear unit does not 

decay
• But error flow would very often diverge
• Surround linear unit with multiplicative 

gates to allow greater control over flow of 
information. 

• Using gates, possible to have stable 
constant error flow
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LSTM Backward Pass

Output gate uses 
standard backprop

Cell states, forget 
gates and input gates 
use Real Time 
Recurrent Learning 
(RTRL)-style partial 
derivative tables
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Compute errors and partials

LSTM Backward Pass
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Compute weight changes

• Weight changes into output gate proportional to output gate delta

• Weight changes into cell, input gate, forget gate proportional to partials



Connectivity

• Recurrent connections 
back into gates and 
cells very useful

• Additional feed-forward 
layers are useful

• Additional LSTM layers 
probably not useful: 
gradient truncated



Speech Recognition

• NNs already show promise (Boulard, 
Robinson, Bengio)

• LSTM may offer a better solution by 
finding long-timescale structure in speech

• At least two areas where this may help:
– Time warping (rate invariance)
– Dynamic, learned model of phoneme 

segmentation (with little apriori knowledge)



Speech Set 1: Spoken Digits

• Mus Silicum Competition 
(Brody and Hopfield) 

• 500 input files, each a 
spoken digit “one”
through “ten”

• Very compressed 
representation:
– 40 spike trains having 

either one or zero spikes 
per train 

– Spikes mark onsets, peaks 
or offsets for 40 different 
frequencies (100Hz to 
5kHz)



Mus Silicium Task A: Identification of digits

• Learn synchrony-based model of digit prediction
• Perform predictions online
• Training set n=300, testing=200

– Error=false negs/npos + false pos/nneg

• Maass et.al. SNN-type Generic Neural 
Microcircuits mean 0.14, best 0.013

• LSTM mean 0.03, best 0.0 (over 25 runs)
• LSTM synchronizes internal states to spike 

onsets



Task B: Identification of  “one” from single example

• Competition task (Hopfield and Brody)
– 1 positive example of “one”
– 9 randomly generated negative examples
– Predict “one” or “not one” for dataset of size 

500
• Best in competition err=0.23
• Hopfield and Brody err=0.14
• LSTM best error=0.14 

(mean over 15 runs=0.26)



Discussion
• LSTM networks much smaller 

– Hopfield and Brody: ~=5600 units 
– Maass: 135 units 
– LSTM: 50 units (10 gated blocks with 2 cells each 

yielding 30 gating units and 20 states)
• LSTM exhibited desired “online prediction”
• LSTM outperformed contest entrants and 

matched performance of Hopfield and Brody. 
• By using synchrony-like mechanism, LSTM 

generalizes well and copes with timewarping



Speech Set 2: Phoneme Identification

• “Numbers 95” database. Numeric street 
addresses and zip codes (collaborator: 
Bengio) 

• 13 MFCC values plus first derivative =  26 
inputs

• 27 possible phonemes
• ~=4500 sentences

~=77000 phonemes
~= 666,000 10ms frames





Task A: Single phoneme identification

• Categorize phonemes in isolation. 
• Prediction made only at last time step 
• LSTM has no advantage because no 

history
• Benchmark ~=92% correct (S. Bengio)
• LSTM ~= 85%*



Task B: frame-level phoneme recognition

• Assign all frames to one of 27 phonemes. 
• Use entire sentence 
• For later phonemes, history can be exploited
• Benchmark ~= 80%
• LSTM ~= 78%*





State trajectories suggest a use of history. 



Alternatives to standard RNNs
• Architectual Changes to RNNs: 

– Time windows: Moving buffer over input time series
– TDNNs: Delayed flow of information through net with cascaded internal delays (Haffner & Waibel)
– Focused Backprop: Delay update of activations (Mozer, also deVries & Principe) 
– NARX: Multiple input time windows (“embedded memories”) shortcut error flow (Lin et al)
– Reuse activations: Update using scaled sum of old act new input (Sun)
– Hierarchical RNNs: Organization time delays hierarchically: (El Hihi et. al.) 
– Dynamic allocation : When a unit receives conflicting error signals, add new unit (Ring)

• Alternative Search Methods for RNNs: 
– Weight guessing: Works only for easy problems (Hochreiter)
– Search without gradients: Propagate discrete error (Bengio et. al.)
– Simulated annealing : Controlled use of noise (Bengio for this specific issue)
– Genetic approaches: (Angeline et. al.)
– Second-order methods: Pseudo-Newton methods, Kalman Filters, Particle Filters 

• Non-RNN Approaches:
– IO-HMMs: Discrete networks trained with EM (Bengio & Frasconi). 
– Spiking Neural Networks: Use synchrony as latching mechanism. 
– Hidden Markov Models : Non-ergodic transition diagrams allow, e.g, left-to-right flow.


