
1

Machine Learning

Lecture 3
Computational Learning Theory

Based on lecture of
Raymond J. Mooney

University of Texas at Austin



2

Learning Theory

• Theorems that characterize classes of learning problems or 
specific algorithms in terms of computational complexity 
or sample complexity, i.e. the number of training examples 
necessary or sufficient to learn hypotheses of a given 
accuracy.

• Complexity of a learning problem depends on:
– Size or expressiveness of the hypothesis space.
– Accuracy to which target concept must be approximated.
– Probability with which the learner must produce a successful 

hypothesis.
– Manner in which training examples are presented, e.g. randomly or 

by query to an oracle.
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Types of Results

• Learning in the limit: Is the learner guaranteed to 
converge to the correct hypothesis in the limit as the 
number of training examples increases indefinitely?

• Sample Complexity: How many training examples are 
needed for a learner to construct (with high probability) a 
highly accurate concept?

• Computational Complexity: How much computational 
resources (time and space) are needed for a learner to 
construct (with high probability) a highly accurate 
concept?
– High sample complexity implies high computational complexity, 

since learner at least needs to read the input data.
• Mistake Bound: Learning incrementally, how many 

training examples will the learner misclassify before 
constructing a highly accurate concept.
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Learning in the Limit

• Given a continuous stream of examples where the learner 
predicts whether each one is a member of the concept or 
not and is then is told the correct answer, does the learner 
eventually converge to a correct concept and never make a 
mistake again.

• No limit on the number of examples required or 
computational demands, but must eventually learn the 
concept exactly, although do not need to explicitly 
recognize this convergence point.

• By simple enumeration, concepts from any known finite 
hypothesis space are learnable in the limit, although 
typically requires an exponential (or doubly exponential) 
number of examples and time.

• Class of total recursive (Turing computable) functions is 
not learnable in the limit.
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Unlearnable Problem
• Identify the function underlying an ordered sequence of natural 

numbers (t:N→N), guessing the next number in the sequence and 
then being told the correct value.

• For any given learning algorithm L, there exists a function t(n) that it 
cannot learn in the limit.

Given the learning algorithm L as a Turing machine:

D L h(n)

Construct a function it cannot learn:

t(n)

<t(0),t(1),…t(n-1)>
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Learning in the Limit vs.
PAC Model

• Learning in the limit model is too strong.
– Requires learning correct exact concept

• Learning in the limit model is too weak
– Allows unlimited data and computational resources.

• PAC Model
– Only requires learning a Probably Approximately 

Correct Concept: Learn a decent approximation most of 
the time.

– Requires polynomial sample complexity and 
computational complexity.
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Cannot Learn Exact Concepts
from Limited Data, Only Approximations
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Cannot Learn Even Approximate Concepts
from Pathological Training Sets

Negative

Positive

Learner Classifier

NegativePositive



9

PAC Learning

• The only reasonable expectation of a learner 
is that with high probability it learns a close 
approximation to the target concept.

• In the PAC model, we specify two small 
parameters, ε and δ, and require that with 
probability at least (1 − δ) a system learn a 
concept with error at most ε.
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Formal Definition of PAC-Learnable

• Consider a concept class C defined over an instance space 
X containing instances of length n, and a learner, L, using a 
hypothesis space, H. C is said to be PAC-learnable by L
using H iff for all c∈C, distributions D over X, 0<ε<0.5, 
0<δ<0.5;  learner L by sampling random examples from 
distribution D, will with probability at least 1− δ output a 
hypothesis h∈H such that errorD(h)≤ ε, in time polynomial 
in 1/ε, 1/δ, n and size(c).

• Example:
– X: instances described by n binary features
– C: conjunctive descriptions over these features
– H: conjunctive descriptions over these features
– L: most-specific conjunctive generalization algorithm (Find-S)
– size(c): the number of literals in c (i.e. length of the conjunction).
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Issues of PAC Learnability

• The computational limitation also imposes a 
polynomial constraint on the training set size, 
since a learner can process at most polynomial 
data in polynomial time.

• How to prove PAC learnability:
– First prove sample complexity of learning C using H is 

polynomial.
– Second prove that the learner can train on a 

polynomial-sized data set in polynomial time.
• To be PAC-learnable, there must be a hypothesis 

in H with arbitrarily small error for every concept 
in C, generally C⊆H.
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Consistent Learners

• A learner L using a hypothesis H and training data 
D is said to be a consistent learner if it always 
outputs a hypothesis with zero error on D
whenever H contains such a hypothesis.

• By definition, a consistent learner must produce a 
hypothesis in the version space for H given D.

• Therefore, to bound the number of examples 
needed by a consistent learner, we just need to 
bound the number of examples needed to ensure 
that the version-space contains no hypotheses with 
unacceptably high error.
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ε-Exhausted Version Space

• The version space, VSH,D, is said to be ε-exhausted iff every 
hypothesis in it has true error less than or equal to ε.

• In other words, there are enough training examples to 
guarantee than any consistent hypothesis has error at most ε.

• One can never be sure that the version-space is ε-exhausted, 
but one can bound the probability that it is not.

• Theorem 7.1 (Haussler, 1988): If the hypothesis space H is 
finite, and D is a sequence of m≥1 independent random 
examples for some target concept c, then for any 0≤ ε ≤ 1, 
the probability that the version space VSH,D is not ε-
exhausted is less than or equal to:

|H|e–εm
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Proof

• Let Hbad={h1,…hk} be the subset of H with error > ε.  The VS 
is not ε-exhausted if any of these are consistent with all m
examples.

• A single hi ∈Hbad is consistent with one example with 
probability:

• A single hi ∈Hbad is consistent with all m independent random 
examples with probability:

• The probability that any hi ∈Hbad is consistent with all m
examples is:

)1()),(consist( ε−≤ii ehP

m
i DhP )1()),(consist( ε−≤
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Proof (cont.)

• Since the probability of a disjunction of events is at most
the sum of the probabilities of the individual events:

• Since:   |Hbad| ≤ |H|    and  (1–ε)m ≤ e–εm, 0≤ ε ≤ 1, m ≥ 0

m
badbad HDHP )1()),(consist( ε−≤

m
bad eHDHP ε−≤)),(consist(

Q.E.D
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Sample Complexity Analysis

• Let δ be an upper bound on the probability of not 
exhausting the version space. So:
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Sample Complexity Result

• Therefore, any consistent learner, given at least:

examples will produce a result that is PAC.
• Just need to determine the size of a hypothesis space to 

instantiate this result for learning specific classes of 
concepts.

• This gives a sufficient number of examples for PAC 
learning, but not a necessary number.  Several 
approximations like that used to bound the probability of a 
disjunction make this a gross over-estimate in practice.
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Sample Complexity of Conjunction Learning

• Consider conjunctions over n boolean features. There are 3n of these 
since each feature can appear positively, appear negatively, or not 
appear in a given conjunction.  Therefore |H|= 3n, so a sufficient 
number of examples to learn a PAC concept is:

• Concrete examples:
– δ=ε=0.05, n=10 gives 280 examples
– δ=0.01, ε=0.05, n=10 gives 312 examples
– δ=ε=0.01, n=10 gives 1,560 examples
– δ=ε=0.01, n=50 gives 5,954 examples

• Result holds for any consistent learner.
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Sample Complexity of Learning
Arbitrary Boolean Functions

• Consider any boolean function over n boolean features such as the 
hypothesis space of DNF or decision trees. There are 22^n of these, so a 
sufficient number of examples to learn a PAC concept is:

• Concrete examples:
– δ=ε=0.05, n=10 gives 14,256 examples
– δ=ε=0.05, n=20 gives 14,536,410 examples
– δ=ε=0.05, n=50 gives 1.561x1016 examples
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Other Concept Classes

• k-term DNF: Disjunctions of at most k unbounded 
conjunctive terms:
– ln(|H|)=O(kn)

• k-DNF: Disjunctions of any number of  terms each limited to 
at most k literals:
– ln(|H|)=O(nk)

• k-term CNF: Conjunctions of at most k unbounded 
disjunctive clauses:
– ln(|H|)=O(kn)

• k-CNF: Conjunctions of any number of clauses each limited 
to at most k literals:
– ln(|H|)=O(nk)

kTTT ∨∨∨ L21

LLL ∨∧∧∧∨∧∧∧ )()(( 2121 kk MMMLLL

kCCC ∧∧∧ L21

LLL ∧∨∨∨∧∨∨∨ )()(( 2121 kk MMMLLL

Therefore, all of these classes have polynomial sample
complexity given a fixed value of k.
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Basic Combinatorics Counting

dups allowed dups not allowed
order relevant samples permutations
order irrelevant selections combinations

samples permutations selections combinations
aa ab aa ab
ab ba ab
ba bb
bb

Pick 2 from
{a,b}
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Computational Complexity of Learning

• However, determining whether or not there exists a k-term DNF or k-
clause CNF formula consistent with a given training set is NP-hard.  
Therefore, these classes are not PAC-learnable due to computational 
complexity.

• There are polynomial time algorithms for learning k-CNF and k-DNF. 
Construct all possible disjunctive clauses (conjunctive terms) of at 
most k literals (there are O(nk) of these), add each as a new constructed 
feature, and then use FIND-S (FIND-G) to find a purely conjunctive 
(disjunctive) concept in terms of these complex features.

Data for 
k-CNF 
concept

Construct all
disj. features

with≤ k literals

Expanded 
data with O(nk) 
new features

Find-S k-CNF
formula

Sample complexity of learning k-DNF and k-CNF are O(nk)
Training on O(nk) examples with O(nk) features takes O(n2k) time
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Enlarging the Hypothesis Space to Make 
Training Computation Tractable

• However, the language k-CNF is a superset of the language k-term-
DNF since any k-term-DNF formula can be rewritten as a k-CNF 
formula by distributing AND over OR.

• Therefore, C = k-term DNF can be learned using H = k-CNF as the 
hypothesis space, but it is intractable to learn the concept in the form 
of a k-term DNF formula (also the k-CNF algorithm might learn a 
close approximation in k-CNF that is not actually expressible in k-term 
DNF).
– Can gain an exponential decrease in computational complexity with only a 

polynomial increase in sample complexity.

• Dual result holds for learning k-clause CNF using k-DNF as the 
hypothesis space.

Data for 
k-term DNF 
concept

k-CNF
Learner

k-CNF
Approximation
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Probabilistic Algorithms

• Since PAC learnability only requires an 
approximate answer with high probability, a 
probabilistic algorithm that only halts and returns 
a consistent hypothesis in polynomial time with a 
high-probability is sufficient.

• However, it is generally assumed that NP 
complete problems cannot be solved even with 
high probability by a probabilistic polynomial-
time algorithm, i.e. RP ≠ NP.

• Therefore, given this assumption, classes like k-
term DNF and k-clause CNF are not PAC 
learnable in that form.
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Infinite Hypothesis Spaces

• The preceding analysis was restricted to finite hypothesis 
spaces.

• Some infinite hypothesis spaces (such as those including 
real-valued thresholds or parameters) are more expressive 
than others.
– Compare a rule allowing one threshold on a continuous feature 

(length<3cm) vs one allowing two thresholds (1cm<length<3cm).
• Need some measure of the expressiveness of infinite 

hypothesis spaces.
• The Vapnik-Chervonenkis (VC) dimension provides just 

such a measure, denoted VC(H).
• Analagous to ln|H|, there are bounds for sample 

complexity using VC(H).
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Shattering Instances

• A hypothesis space is said to shatter a set of instances iff
for every partition of the instances into positive and 
negative, there is a hypothesis that produces that partition.

• For example, consider 2 instances described using a single 
real-valued feature being shattered by intervals.

+      –
_ x,y
x       y
y       x
x,y

yx
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Shattering Instances (cont)

• But 3 instances cannot be shattered by a single interval.

+        –
_ x,y,z

x       y,z
y       x,z
x,y z

x,y,z
y,z x
z       x,y

x,z y  

x y z

Cannot do

• Since there are 2m partitions of m instances, in order for H 
to shatter instances: |H|  ≥ 2m.
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VC Dimension

• An unbiased hypothesis space shatters the entire instance space.
• The larger the subset of X that can be shattered, the more 

expressive the hypothesis space is, i.e. the less biased.
• The Vapnik-Chervonenkis dimension, VC(H). of hypothesis 

space H defined over instance space X is the size of the largest 
finite subset of X shattered by H. If arbitrarily large finite 
subsets of X can be shattered then VC(H) = ∞

• If there exists at least one subset of X of size d that can be 
shattered then VC(H) ≥ d. If no subset of size d can be 
shattered, then VC(H) < d.

• For a single intervals on the real line, all sets of 2 instances can 
be shattered, but no set of 3 instances can, so VC(H) = 2.

• Since |H| ≥ 2m, to shatter m instances, VC(H) ≤ log2|H|
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VC Dimension Example

• Consider axis-parallel rectangles in the real-plane, i.e. 
conjunctions of intervals on two real-valued features. 
Some 4 instances can be shattered.

Some 4 instances cannot be shattered:
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VC Dimension Example (cont)

• No five instances can be shattered since there can be at 
most 4 distinct extreme points (min and max on each of the 
2 dimensions) and these 4 cannot be included without 
including any possible 5th point.

• Therefore VC(H) = 4
• Generalizes to axis-parallel hyper-rectangles (conjunctions 

of intervals in n dimensions): VC(H)=2n.
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Upper Bound on Sample Complexity with VC

• Using VC dimension as a measure of expressiveness, the 
following number of examples have been shown to be 
sufficient for PAC Learning (Blumer et al., 1989).

• Compared to the previous result using ln|H|, this bound has 
some extra constants and an extra log2(1/ε) factor. Since 
VC(H) ≤ log2|H|, this can provide a tighter upper bound on 
the number of examples needed for PAC learning.
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Conjunctive Learning 
with Continuous Features

• Consider learning axis-parallel hyper-rectangles, 
conjunctions on intervals on n continuous features.
– 1.2 ≤ length ≤ 10.5 ∧ 2.4 ≤ weight ≤ 5.7

• Since VC(H)=2n sample complexity is

• Since the most-specific conjunctive algorithm can easily 
find the tightest interval along each dimension that covers 
all of the positive instances (fmin ≤ f ≤ fmax) and runs in 
linear time, O(|D|n), axis-parallel hyper-rectangles are 
PAC learnable.
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Sample Complexity Lower Bound with VC

• There is also a general lower bound on the minimum number of 
examples necessary for PAC learning (Ehrenfeucht, et al., 
1989):
Consider any concept class C such that VC(H)≥2 any learner L
and any 0<ε<1/8, 0<δ<1/100. Then there exists a distribution D
and target concept in C such that if L observes fewer than:

examples, then with probability at least δ,  L outputs a 
hypothesis having error greater than ε.

• Ignoring constant factors, this lower bound is the same as the 
upper bound except for the extra log2(1/ ε) factor in the upper 
bound.
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Analyzing a Preference Bias

• Unclear how to apply previous results to an algorithm with a 
preference bias such as simplest decisions tree or simplest DNF.

• If the size of the correct concept is n, and the algorithm is 
guaranteed to return the minimum sized hypothesis consistent 
with the training data, then the algorithm will always return a 
hypothesis of size at most n, and the effective hypothesis space 
is all hypotheses of size at most n.

• Calculate |H| or VC(H) of hypotheses of size at most n to 
determine sample complexity.

c

All hypotheses
Hypotheses of 
size at most n
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Computational Complexity and
Preference Bias

• However, finding a minimum size hypothesis for most 
languages is computationally intractable.

• If one has an approximation algorithm that can bound the size 
of the constructed hypothesis to some polynomial function, f(n), 
of the minimum size n, then can use this to define the effective 
hypothesis space.

• However, no worst case approximation bounds are known for 
practical learning algorithms (e.g. ID3).

c

All hypotheses
Hypotheses of 
size at most n

Hypotheses of size 
at most f(n).
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“Occam’s Razor” Result
(Blumer et al., 1987)

• Assume that a concept can be represented using at most n
bits in some representation language.

• Given a training set, assume the learner returns the 
consistent hypothesis representable with the least number 
of bits in this language.

• Therefore the effective hypothesis space is all concepts 
representable with at most n bits.

• Since n bits can code for at most 2n hypotheses, |H|=2n, so 
sample complexity if bounded by:

• This result can be extended to approximation algorithms 
that can bound the size of the constructed hypothesis to at 
most nk for some fixed constant k (just replace n with nk)
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Interpretation of “Occam’s Razor” Result

• Since the encoding is unconstrained it fails to 
provide any meaningful definition of “simplicity.”

• Hypothesis space could be any sufficiently small 
space, such as “the 2n most complex boolean
functions, where the complexity of a function is 
the size of its smallest DNF representation”

• Assumes that the correct concept (or a close 
approximation) is actually in the hypothesis space, 
so assumes a priori that the concept is simple.

• Does not provide a theoretical justification of 
Occam’s Razor as it is normally interpreted.
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COLT Conclusions

• The PAC framework provides a theoretical framework for 
analyzing the effectiveness of learning algorithms.

• The sample complexity for any consistent learner using 
some hypothesis space, H, can be determined from a 
measure of its expressiveness |H| or VC(H), quantifying 
bias and relating it to generalization.

• If sample complexity is tractable, then the computational 
complexity of finding a consistent hypothesis in H governs 
its PAC learnability.

• Constant factors are more important in sample complexity 
than in computational complexity, since our ability to 
gather data is generally not growing exponentially.

• Experimental results suggest that theoretical sample 
complexity bounds over-estimate the number of training 
instances needed in practice since they are worst-case 
upper bounds.
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