## Machine Learning

Lecture 4
Decision Tree Learning

## Outline

- Decision tree representation
- ID3 learning algorithm
- Entropy, information gain
- Overfitting


## Decision Tree for PlayTennis



## Decision Tree for PlayTennis



## Decision Tree for PlayTennis



## Decision Tree for Conjunction

Outlook=Sunny $\wedge$ Wind=Weak


## Decision Tree for Disjunction

Outlook=Sunny $\vee$ Wind $=$ Weak


## Decision Tree for XOR

Outlook=Sunny XOR Wind=Weak


## Decision Tree

- decision trees represent disjunctions of conjunctions

(Outlook=Sunny $\wedge$ Humidity=Normal)
$\checkmark \quad$ (Outlook=Overcast)
$\checkmark \quad$ (Outlook=Rain $\wedge$ Wind=Weak)


## When to consider Decision

## Trees

- Instances describable by attribute-value pairs
- Target function is discrete valued
- Disjunctive hypothesis may be required
- Possibly noisy training data
- Missing attribute values
- Examples:
- Medical diagnosis
- Credit risk analysis
- Object classification for robot manipulator (Tan 1993)


## Top-Down Induction of Decision Trees ID3

1. $\mathrm{A} \leftarrow$ the "best" decision attribute for next node
2. Assign $A$ as decision attribute for node
3. For each value of A create new descendant
4. Sort training examples to leaf node according to the attribute value of the branch
5. If all training examples are perfectly classified (same value of target attribute) stop, else iterate over new leaf nodes.

## Which Attribute is "best"?



## Entropy



- $S$ is a sample of training examples
- $\mathrm{p}_{+}$is the proportion of positive examples
- $\mathrm{p}_{\mathrm{s}}$ is the proportion of negative examples
- Entropy measures the impurity of $S$
$\operatorname{Entropy}(S)=-p_{+} \log _{2} p_{+}-p_{-} \log _{2} p_{-}$


## Entropy

- Entropy(S) = expected number of bits needed to encode class (+ or -) of randomly drawn members of $S$ (under the optimal, shortest length-code)
Why?
- Information theory optimal length code assign
$-\log _{2} p$ bits to messages having probability $p$.
- So the expected number of bits to encode ( + or - ) of random member of S :

$$
-p_{+} \log _{2} p_{+}-p_{-} \log _{2} p_{-}
$$

## Information Gain

- Gain(S,A): expected reduction in entropy due to sorting $S$ on attribute $A$
$\operatorname{Gain}(\mathrm{S}, \mathrm{A})=\operatorname{Entropy}(\mathrm{S})-\sum_{\mathrm{v} \in \text { values(A) }}\left|\mathrm{S}_{\mathrm{v}}\right| /|\mathrm{S}| \operatorname{Entropy}\left(\mathrm{S}_{\mathrm{v}}\right)$ Entropy $([29+, 35-])=-29 / 64 \log _{2} 29 / 64-35 / 64 \log _{2} 35 / 64$ $=0.99$



## Information Gain

Entropy $([21+, 5-])=0.71$
Entropy $([8+, 30-])=0.74$
Gain $\left(\mathrm{S}, \mathrm{A}_{1}\right)=$ Entropy $(\mathrm{S})$
$-26 / 64^{*}$ Entropy $([21+, 5-])$
$-38 / 64^{*}$ Entropy $([8+, 30-])$
$=0.27$

[21+, 5-]
[8+, 30-]

Entropy $([18+, 33-])=0.94$ Entropy $([8+, 30-])=0.62$ Gain( $\mathrm{S}, \mathrm{A}_{2}$ ) $=$ Entropy $(\mathrm{S})$
$-51 / 64 *$ Entropy $([18+, 33-])$
$-13 / 64 *$ Entropy([11+,2-])
$=0.12$


## Training Examples

| Day | Outlook | Temp. | Humidity | Wind | Play Tennis |
| :--- | :--- | :--- | :--- | :--- | :--- |
| D1 | Sunny | Hot | High | Weak | No |
| D2 | Sunny | Hot | High | Strong | No |
| D3 | Overcast | Hot | High | Weak | Yes |
| D4 | Rain | Mild | High | Weak | Yes |
| D5 | Rain | Cool | Normal | Weak | Yes |
| D6 | Rain | Cool | Normal | Strong | No |
| D7 | Overcast | Cool | Normal | Weak | Yes |
| D8 | Sunny | Mild | High | Weak | No |
| D9 | Sunny | Cold | Normal | Weak | Yes |
| D10 | Rain | Mild | Normal | Strong | Yes |
| D11 | Sunny | Mild | Normal | Strong | Yes |
| D12 | Overcast | Mild | High | Strong | Yes |
| D13 | Overcast | Hot | Normal | Weak | Yes |
| D14 | Rain | Mild | High | Strong | No |

## Selecting the Next Attribute



Gain(S,Humidity)
$=0.940-(7 / 14) * 0.985$

- (7/14)*0.592
$=0.151$


Gain(S,Wind)
$=0.940-(8 / 14) * 0.811$

- $(6 / 14) * 1.0$
$=0.048$


## Selecting the Next Attribute



Gain(S, Outlook)
$=0.940-(5 / 14) * 0.971$
$-(4 / 14) * 0.0-(5 / 14) * 0.0971$
$=0.247$

## ID3 Algorithm

 $S_{\text {sunny }}=[D 1, D 2, D 8, D 9, D 11]$ [D3,D7,D12,D13] [D4,D5,D6,D10,D14]$$
[2+, 3-]
$$


[4+,0-]
[3+,2-]
Yes
$?$

Gain $\left(S_{\text {sunny }}\right.$, Humidity $)=0.970-(3 / 5) 0.0-2 / 5(0.0)=0.970$ Gain $\left(S_{\text {sunny }}, T e m p.\right)=0.970-(2 / 5) 0.0-2 / 5(1.0)-(1 / 5) 0.0=0.570$ $\operatorname{Gain}\left(S_{\text {sunny }}, W i n d\right)=0.970=-(2 / 5) 1.0-3 / 5(0.918)=0.019$

## ID3 Algorithm



## Hypothesis Space Search ID3



## Hypothesis Space Search ID3

- Hypothesis space is complete!
- Target function surely in there...
- Outputs a single hypothesis
- No backtracking on selected attributes (greedy search)
- Local minimal (suboptimal splits)
- Statistically-based search choices
- Robust to noisy data
- Inductive bias (search bias)
- Prefer shorter trees over longer ones
- Place high information gain attributes close to the root


## Inductive Bias in ID3

- $H$ is the power set of instances $X$
- Unbiased ?
- Preference for short trees, and for those with high information gain attributes near the root
- Bias is a preference for some hypotheses, rather than a restriction of the hypothesis space H
- Occam's razor: prefer the shortest (simplest) hypothesis that fits the data


## Occam's Razor

Why prefer short hypotheses?
Argument in favor:

- Fewer short hypotheses than long hypotheses
- A short hypothesis that fits the data is unlikely to be a coincidence
- A long hypothesis that fits the data might be a coincidence Argument opposed:
- There are many ways to define small sets of hypotheses
- E.g. All trees with a prime number of nodes that use attributes beginning with "Z"
- What is so special about small sets based on size of hypothesis


## Overfitting

Consider error of hypothesis h over

- Training data: error ${ }_{\text {train }}(\mathrm{h})$
- Entire distribution D of data: $\operatorname{error}_{D}(h)$

Hypothesis $\mathrm{h} \in \mathrm{H}$ overfits training data if there is an alternative hypothesis $h^{\prime} \in \mathrm{H}$ such that

$$
\text { error }_{\text {train }}(\mathrm{h})<\text { error }_{\text {train }}\left(\mathrm{h}^{\prime}\right)
$$

and

$$
\operatorname{error}_{D}(\mathrm{~h})>\operatorname{error}_{\mathrm{D}}\left(\mathrm{~h}^{\prime}\right)
$$

## Overfitting (2)

- Learning a tree that classifies the training data perfectly may not lead to the tree with the best generalization to unseen data.
- There may be noise in the training data that the tree is erroneously fitting.
- The algorithm may be making poor decisions towards the leaves of the tree that are based on very little data and may not reflect reliable trends.
- A hypothesis, $h$, is said to overfit the training data is there exists another hypothesis which, $h^{\prime}$, such that $h$ has less error than $h^{\prime}$ on the training data but greater error on independent test data.



## Overfitting in Decision Tree

## Learning



## Overfitting Example

## Testing Ohms Law: V = IR (I = (1/R)V)

Experimentally measure 10 points

Fit a curve to the Resulting data.


Perfect fit to training data with an $9^{\text {th }}$ degree polynomial (can fit $n$ points exactly with an $n-1$ degree polynomial)

Ohm was wrong, we have found a more accurate function!

## Overfitting Example



Better generalization with a linear function that fits training data less accurately.

## Avoid Overfitting

How can we avoid overfitting?

- Stop growing when data split not statistically significant
- Grow full tree then post-prune
- Minimum description length (MDL):

Minimize:
size(tree) + size(misclassifications(tree))

## Reduced-Error Pruning

Split data into training and validation set
Do until further pruning is harmful:

1. Evaluate impact on validation set of pruning each possible node (plus those below it)
2. Greedily remove the one that most improves the validation set accuracy

Produces smallest version of most accurate subtree

## Effect of Reduced Error

## Pruning



## Rule-Post Pruning

1. Convert tree to equivalent set of rules
2. Prune each rule independently of each other
3. Sort final rules into a desired sequence to use

Method used in C4.5

## Converting a Tree to Rules


$R_{1}$ : If (Outlook=Sunny) $\wedge$ (Humidity=High) Then PlayTennis=No
$R_{2}$ : If (Outlook=Sunny) $\wedge$ (Humidity=Normal) Then PlayTennis=Ye
$\mathrm{R}_{3}$ : If (Outlook=Overcast) Then PlayTennis=Yes
$\mathrm{R}_{4}$ : If (Outlook=Rain) $\wedge$ (Wind=Strong) Then PlayTennis=No
$R_{5}$ : If (Outlook=Rain) $\wedge($ Wind=Weak) Then PlayTennis=Yes 35

## Additional Decision Tree

 I ssues- Better splitting criteria
- Information gain prefers features with many values.
- Continuous features
- Predicting a real-valued function (regression trees)
- Missing feature values
- Features with costs
- Misclassification costs
- Incremental learning
- ID4
- ID5
- Mining large databases that do not fit in main memory


## Continuous Valued Attributes

Create a discrete attribute to test continuous

- Temperature $=24.5^{\circ} \mathrm{C}$
- (Temperature $>20.0^{\circ} \mathrm{C}$ ) $=\{$ true, false $\}$ Where to set the threshold?

| Temperatur | $15^{\circ} \mathrm{C}$ | $18^{\circ} \mathrm{C}$ | $19^{\circ} \mathrm{C}$ | $22^{\circ} \mathrm{C}$ | $24^{\circ} \mathrm{C}$ | $27^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| PlayTennis | No | No | Yes | Yes | Yes | No |

## Attributes with many Values

- Problem: if an attribute has many values, maximizing InformationGain will select it.
- E.g.: Imagine using Date=12.7.1996 as attribute perfectly splits the data into subsets of size 1
Use GainRatio instead of information gain as criteria:
GainRatio( $S, A$ ) $=$ Gain $(S, A) /$ Split/Information $(S, A)$
Splitinformation $(S, A)=-\Sigma_{i=1 . . c}\left|\mathrm{~S}_{\mathrm{i}}\right| /|\mathrm{S}| \log _{2}\left|\mathrm{~S}_{\mathrm{i}}\right| /|\mathrm{S}|$
Where $S_{i}$ is the subset for which attribute $A$ has the value $v_{i}$


## Attributes with Cost

Consider:

- Medical diagnosis : blood test costs 1000 SEK
- Robotics: width_from_one_feet has cost 23 secs.

How to learn a consistent tree with low expected cost?
Replace Gain by :
Gain²(S,A)/Cost(A) [Tan, Schimmer 1990]
$2^{\text {Gain( }}(, A)-1 /(\operatorname{Cost}(A)+1)^{w} w \in[0,1][$ Nunez 1988]

## Unknown Attribute Values

What is some examples missing values of $A$ ?
Use training example anyway sort through tree

- If node n tests A , assign most common value of A among other examples sorted to node $n$.
- Assign most common value of A among other examples with same target value
- Assign probability pi to each possible value vi of A
- Assign fraction pi of example to each descendant in tree

Classify new examples in the same fashion

