
Machine Learning

Lecture 4
Decision Tree Learning
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Outline

Decision tree representation
ID3 learning algorithm
Entropy, information gain
Overfitting
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Decision Tree for PlayTennis

Outlook

Sunny Overcast Rain

Humidity

High Normal

Wind

Strong Weak

No Yes

Yes

YesNo
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Decision Tree for PlayTennis

Outlook

Sunny Overcast Rain

Humidity

High Normal

No Yes

Each internal node tests an attribute

Each branch corresponds to an
attribute value node

Each leaf node assigns a classification
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Decision Tree for PlayTennis

No

Outlook

Sunny Overcast Rain

Humidity

High Normal

Wind

Strong Weak

No Yes

Yes

YesNo

Outlook Temperature Humidity Wind    PlayTennis
Sunny        Hot            High    Weak       ?
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Decision Tree for Conjunction
Outlook=Sunny ∧ Wind=Weak

Outlook

Sunny Overcast Rain

Wind

Strong Weak

No Yes

No No



7

Decision Tree for Disjunction
Outlook=Sunny ∨ Wind=Weak

Outlook

Sunny Overcast Rain

Yes Wind

Strong Weak

No Yes

Wind

Strong Weak

No Yes
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Decision Tree for XOR
Outlook=Sunny XOR Wind=Weak

Outlook

Sunny Overcast Rain

Wind

Strong Weak

Yes No

Wind

Strong Weak

No Yes

Wind

Strong Weak

No Yes
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Decision Tree 
• decision trees represent disjunctions of conjunctions

Outlook

Sunny Overcast Rain

Humidity

High Normal

Wind

Strong Weak

No Yes

Yes

YesNo

(Outlook=Sunny ∧ Humidity=Normal) 
∨ (Outlook=Overcast)
∨ (Outlook=Rain ∧ Wind=Weak)
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When to consider Decision 
Trees

Instances describable by attribute-value pairs
Target function is discrete valued
Disjunctive hypothesis may be required
Possibly noisy training data
Missing attribute values
Examples:

Medical diagnosis
Credit risk analysis
Object classification for robot manipulator (Tan 1993)
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Top-Down Induction of 
Decision Trees ID3

1. A ← the “best” decision attribute for next node
2. Assign A as decision attribute for node
3.  For each value of A create new descendant 
4. Sort training examples to leaf node according to

the attribute value of the branch
5. If all training examples are perfectly classified 

(same value of target attribute) stop, else 
iterate over new leaf nodes.
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Which Attribute is ”best”?

A1=?

True False

[21+, 5-] [8+, 30-]

[29+,35-] A2=?

True False

[18+, 33-] [11+, 2-]

[29+,35-]
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Entropy

S is a sample of training examples
p+ is the proportion of positive examples
p- is the proportion of negative examples
Entropy measures the impurity of S
Entropy(S) = -p+ log2 p+ - p- log2 p-
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Entropy

Entropy(S)= expected number of bits needed to 
encode class (+ or -) of randomly drawn 
members of S (under the optimal, shortest 
length-code)

Why?
Information theory optimal length code assign 
–log2 p bits to messages having probability p.
So the expected number of bits to encode 
(+ or -) of random member of S:

-p+ log2 p+ - p- log2 p-



15

Information Gain
Gain(S,A): expected reduction in entropy due 
to sorting S on attribute A

Gain(S,A)=Entropy(S) - ∑v∈values(A) |Sv|/|S| Entropy(Sv)

Entropy([29+,35-]) = -29/64 log2 29/64 – 35/64 log2 35/64
= 0.99

A1=?

True False

[21+, 5-] [8+, 30-]

[29+,35-] A2=?

True False

[18+, 33-] [11+, 2-]

[29+,35-]
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Information Gain
Entropy([18+,33-]) = 0.94
Entropy([8+,30-]) = 0.62
Gain(S,A2)=Entropy(S)

-51/64*Entropy([18+,33-]) 
-13/64*Entropy([11+,2-])

=0.12

Entropy([21+,5-])   = 0.71
Entropy([8+,30-]) = 0.74
Gain(S,A1)=Entropy(S)

-26/64*Entropy([21+,5-]) 
-38/64*Entropy([8+,30-])

=0.27

A1=?

True False

[21+, 5-] [8+, 30-]

[29+,35-] A2=?

True False

[18+, 33-] [11+, 2-]

[29+,35-]
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Training Examples
Day Outlook Temp. Humidity Wind Play Tennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Weak Yes
D8 Sunny Mild High Weak No
D9 Sunny Cold Normal Weak Yes
D10 Rain Mild Normal Strong Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
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Selecting the Next Attribute
S=[9+,5-]
E=0.940

S=[9+,5-]
E=0.940

Humidity

High Normal

[3+, 4-] [6+, 1-]

E=0.985 E=0.592

Wind

Weak Strong

[6+, 2-] [3+, 3-]

E=0.811 E=1.0
Gain(S,Wind)
=0.940-(8/14)*0.811 
– (6/14)*1.0

=0.048

Gain(S,Humidity)
=0.940-(7/14)*0.985 
– (7/14)*0.592

=0.151



19

Selecting the Next Attribute
S=[9+,5-]
E=0.940

Outlook

Sunny Rain

[2+, 3-] [3+, 2-]

E=0.971 E=0.971

Over
cast

[4+, 0]

E=0.0
Gain(S,Outlook)
=0.940-(5/14)*0.971 
-(4/14)*0.0 – (5/14)*0.0971

=0.247
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ID3 Algorithm

Outlook

Sunny Overcast Rain

Yes

[D1,D2,…,D14]
[9+,5-]

Ssunny=[D1,D2,D8,D9,D11]
[2+,3-]

?    ?    

[D3,D7,D12,D13]
[4+,0-]

[D4,D5,D6,D10,D14]
[3+,2-]

Gain(Ssunny , Humidity)=0.970-(3/5)0.0 – 2/5(0.0) = 0.970
Gain(Ssunny , Temp.)=0.970-(2/5)0.0 –2/5(1.0)-(1/5)0.0 = 0.570
Gain(Ssunny , Wind)=0.970= -(2/5)1.0 – 3/5(0.918) = 0.019
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ID3 Algorithm
Outlook

Sunny Overcast Rain

Humidity Yes Wind

Strong Weak

[D3,D7,D12,D13]

High Normal

No Yes No Yes

[D6,D14] [D4,D5,D10][D8,D9,D11][D1,D2]
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Hypothesis Space Search ID3

+   - +

+  - +

A1

- - +
+  - +

A2

+   - -

+  - +

A2

-

A4
+  -

A2

-

A3
- +
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Hypothesis Space Search ID3

Hypothesis space is complete!
Target function surely in there…

Outputs a single hypothesis 
No backtracking on selected attributes (greedy search)

Local minimal (suboptimal splits)
Statistically-based search choices

Robust to noisy data
Inductive bias (search bias)

Prefer shorter trees over longer ones
Place high information gain attributes close to the root
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Inductive Bias in ID3

H is the power set of instances X
Unbiased ?

Preference for short trees, and for those with high 
information gain attributes near the root
Bias is a preference for some hypotheses, rather than 
a restriction of the hypothesis space H
Occam’s razor: prefer the shortest (simplest) 
hypothesis that fits the data
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Occam’s Razor

Why prefer short hypotheses?
Argument in favor: 

Fewer short hypotheses than long hypotheses
A short hypothesis that fits the data is unlikely to be a 
coincidence
A long hypothesis that fits the data might be a coincidence

Argument opposed:
There are many ways to define small sets of hypotheses
E.g. All trees with a prime number of nodes that use attributes 
beginning with ”Z”
What is so special about small sets based on size of hypothesis
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Overfitting

Consider error of hypothesis h over
Training data: errortrain(h)
Entire distribution D of data: errorD(h)

Hypothesis h∈H overfits training data if there is 
an alternative hypothesis h’∈H such that

errortrain(h) < errortrain(h’)
and

errorD(h) > errorD(h’)
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Overfitting (2)
Learning a tree that classifies the training data perfectly may not 
lead to the tree with the best generalization to unseen data.

There may be noise in the training data that the tree is 
erroneously fitting.
The algorithm may be making poor decisions towards the leaves 
of the tree that are based on very little data and may not reflect 
reliable trends.

A hypothesis, h, is said to overfit the training data is there exists 
another hypothesis which, h´, such that h has less error than h´ on 
the training data but greater error on independent test data.

hypothesis complexity

on training data

on test data

ac
cu

ra
cy
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Overfitting in Decision Tree 
Learning



29

Overfitting Example
Testing Ohms Law: V = IR   (I = (1/R)V)

voltage (V)

cu
rr

en
t (

I)

Perfect fit to training data with an 9th degree polynomial
(can fit n points exactly with an n-1 degree polynomial)

Experimentally
measure 10 points

Fit a curve to the
Resulting data.

Ohm was wrong, we have found a more accurate function!
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Overfitting Example

voltage (V)

Testing Ohms Law: V = IR   (I = (1/R)V)

cu
rr

en
t (

I)

Better generalization with a linear function
that fits training data less accurately.
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Avoid Overfitting
How can we avoid overfitting?

Stop growing when data split not statistically 
significant
Grow full tree then post-prune
Minimum description length (MDL): 
Minimize: 
size(tree) + size(misclassifications(tree))
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Reduced-Error Pruning

Split data into training and validation set
Do until further pruning is harmful:
1. Evaluate impact on validation set of pruning 

each possible node (plus those below it)
2. Greedily remove the one that most 

improves the validation set accuracy

Produces smallest version of most accurate 
subtree



33

Effect of Reduced Error 
Pruning
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Rule-Post Pruning

1. Convert tree to equivalent set of rules
2. Prune each rule independently of each 

other
3. Sort final rules into a desired sequence to 

use

Method used in C4.5
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Converting a Tree to Rules
Outlook

Sunny Overcast Rain

Humidity

High Normal

Wind

Strong Weak

No Yes

Yes

YesNo

R1: If (Outlook=Sunny) ∧ (Humidity=High) Then PlayTennis=No 
R2: If (Outlook=Sunny) ∧ (Humidity=Normal) Then PlayTennis=Yes
R3: If (Outlook=Overcast) Then PlayTennis=Yes
R4: If (Outlook=Rain) ∧ (Wind=Strong) Then PlayTennis=No
R5: If (Outlook=Rain) ∧ (Wind=Weak) Then PlayTennis=Yes
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Additional Decision Tree 
Issues
Better splitting criteria

Information gain prefers features with many values.
Continuous features
Predicting a real-valued function (regression trees)
Missing feature values
Features with costs
Misclassification costs
Incremental learning

ID4
ID5

Mining large databases that do not fit in main memory
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Continuous Valued Attributes

Create a discrete attribute to test continuous 
Temperature = 24.50C
(Temperature > 20.00C) = {true, false} 

Where to set the threshold?

Temperatur 150C 180C 190C 220C 240C 270C

PlayTennis No No Yes Yes Yes No
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Attributes with many Values

Problem: if an attribute has many values, maximizing 
InformationGain will select it.
E.g.: Imagine using Date=12.7.1996 as attribute
perfectly splits the data into subsets of size 1

Use GainRatio instead of information gain as  criteria:
GainRatio(S,A) = Gain(S,A) / SplitInformation(S,A)

SplitInformation(S,A) = -Σi=1..c |Si|/|S| log2 |Si|/|S|
Where Si is the subset for which attribute A has the value vi



39

Attributes with Cost

Consider:
Medical diagnosis : blood test costs 1000 SEK
Robotics: width_from_one_feet has cost 23 secs.

How to learn a consistent tree with low expected 
cost?

Replace Gain by :
Gain2(S,A)/Cost(A)   [Tan, Schimmer 1990]
2Gain(S,A)-1/(Cost(A)+1)w w ∈[0,1] [Nunez 1988]
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Unknown Attribute Values

What is some examples missing values of A?
Use training example anyway sort through tree

If node n tests A, assign most common value of A among 
other examples sorted to node n.
Assign most common value of A among other examples
with same target value
Assign probability pi to each possible value vi of A

Assign fraction pi of example to each descendant in tree

Classify new examples in the same fashion 
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