Machine Learning

Lecture 5 Artificial Neural Networks. Multi-layer perceptrons. Error back propagation

- Perceptrons
- Gradient descent
- Multi-layer networks
- Backpropagation

Biological Neural Systems

- Neuron switching time : > 10⁻³ secs
- Number of neurons in the human brain: $\sim 10^{10}$
- Connections (synapses) per neuron : ~10⁴–10⁵
- Face recognition : 0.1 secs
- High degree of parallel computation
- Distributed representations
- Associative processing of images
- Flexibility and robustness based on learning

Properties of Artificial Neural Nets (ANNs)

- Many simple neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed processing
- Learning by tuning the connection weights
- Some models provide learning by creation of new neurons

Kinds of NN

- Supervised
- Feedforward
 - Linear
 - Hebbian Hebb (1949), Fausett (1994)
 - Perceptron Rosenblatt (1958), Minsky and Papert (1969/1988), Fausett (1994)
 - Adaline Widrow and Hoff (1960), Fausett (1994)
 - Higher Order Bishop (1995)
 - Functional Link Pao (1989)
 - MLP: Multilayer perceptron Bishop (1995), Reed and Marks (1999), Fausett (1994)
 - Backprop Rumelhart, Hinton, and Williams (1986)
 - Cascade Correlation Fahlman and Lebiere (1990), Fausett (1994)
 - Quickprop Fahlman (1989)
 - RPROP Riedmiller and Braun (1993)
 - RBF networks Bishop (1995), Moody and Darken (1989), Orr (1996)
 - OLS: Orthogonal Least Squares Chen, Cowan and Grant (1991)
 - CMAC: Cerebellar Model Articulation Controller Albus (1975), Brown and Harris (1994)
 - Classification only
 - LVQ: Learning Vector Quantization Kohonen (1988), Fausett (1994)
 - PNN: Probabilistic Neural Network Specht (1990), Masters (1993), Hand (1982), Fausett (1994)
 - Regression only
 - GNN: General Regression, Neural Network Specht (1991), Nadaraya (1964), Watson Andrey V. Gavrilov (1964)
 Kyung Hee University

Kinds of NN (2)

- Feedback Hertz, Krogh, and Palmer (1991), Medsker and Jain (2000)
 - BAM: Bidirectional Associative Memory Kosko (1992), Fausett (1994)
 - Boltzman Machine Ackley et al. (1985), Fausett (1994)
 - Recurrent time series
 - Backpropagation through time Werbos (1990)
 - Elman Elman (1990)
 - FIR: Finite Impulse Response Wan (1990)
 - Jordan Jordan (1986)
 - Real-time recurrent network Williams and Zipser (1989)
 - Recurrent backpropagation Pineda (1989), Fausett (1994)
 - TDNN: Time Delay NN Lang, Waibel and Hinton (1990)

Kinds of NN (3)

- Unsupervised Hertz, Krogh, and Palmer (1991)
- Competitive
 - Vector Quantization
 - Grossberg Grossberg (1976)
 - Kohonen Kohonen (1984)
 - Conscience Desieno (1988)
 - Self-Organizing Map
 - Kohonen Kohonen (1995), Fausett (1994)
 - GTM: Bishop, Svensén and Williams (1997)
 - Local Linear Mulier and Cherkassky (1995)
 - Adaptive resonance theory
 - ART 1 Carpenter and Grossberg (1987a), Moore (1988), Fausett (1994)
 - ART 2 Carpenter and Grossberg (1987b), Fausett (1994)
 - ART 2-A Carpenter, Grossberg and Rosen (1991a)
 - ART 3 Carpenter and Grossberg (1990)
 - Fuzzy ART Carpenter, Grossberg and Rosen (1991b)
 - DCL: Differential Competitive Learning Kosko (1992)
- Dimension Reduction Diamantaras and Kung (1996)
 - Hebbian Hebb (1949), Fausett (1994)
 - Oja Oja (1989)
 - Sanger Sanger (1989)
 - Differential Hebbian Kosko (1992)
- Autoassociation
 - Linear autoassociator Anderson et al. (1977), Fausett (1994)
 - BSB: Brain State in a Box Anderson et al. (1977), Fausett (1994)
 - Hopfield Hopfield (1982), Fausett (1994)
- Nonlearning
- Hopfield Hertz, Krogh, and Palmer (1991)
 Andrey V. Gavrilov
- various networks for optimization Cichocki aKy Unge Have N nives ity

Appropriate Problem Domains for Neural Network Learning

- Input is high-dimensional discrete or realvalued (e.g. raw sensor input)
- Output is discrete or real valued
- Output is a vector of values
- Form of target function is unknown
- Humans do not need to interpret the results (black box model)

Drives 70 mph on a public highway

Camera image

4 hidden units

30x32 pixels as inputs

30x32 weights into one out of four hidden unit

Linear treshold unit (LTU)

Decision Surface of a Perceptron

- Perceptron is able to represent some useful functions
- And (x_1, x_2) choose weights $w_0 = -1.5$, $w_1 = 1$, $w_2 = 1$
- But functions that are not linearly separable (e.g. Xor) are not representable

Perceptron Learning Rule

$$\begin{split} & w_i = w_i + \Delta w_i \\ & \Delta w_i = \eta \ (t - 0) \ x_i \\ & t = c(x) \ is \ the \ target \ value \\ & o \ is \ the \ perceptron \ output \\ & \eta \ Is \ a \ small \ constant \ (e.g. \ 0.1) \ called \$$
learning \ rate \ and a \ barbox{}

- If the output is correct (t=o) the weights w_i are not changed
- If the output is incorrect (t≠o) the weights w_i are changed such that the output of the perceptron for the new weights is *closer* to t.
- The algorithm converges to the correct classification
 - if the training data is linearly separable
 - and η is sufficiently small Kyung Hee University

Kyung Hee University

Gradient Descent Learning Rule

 Consider linear unit without threshold and continuous output o (not just –1,1)

• $O = W_0 + W_1 X_1 + ... + W_n X_n$

Train the w_i's such that they minimize the squared error

•
$$E[w_1,...,w_n] = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

where D is the set of training examples

Gradient Descent

Gradient-Descent(*training_examples*, η)

- Each training example is a pair of the form $\langle (x_1, ..., x_n), t \rangle$ where $(x_1, ..., x_n)$ is the vector of input values, and t is the target output value, η is the learning rate (e.g. 0.1)
- Initialize each w_i to some small random value
- Until the termination condition is met, Do
 - Initialize each Δw_i to zero
 - For each < (x₁,...x_n),t> in *training_examples* Do
 - Input the instance (x₁,...,x_n) to the linear unit and compute the output o
 - For each linear unit weight w_i Do

• $\Delta W_i = \Delta W_i + \eta$ (t-o) X_i

- For each linear unit weight wi Do
 - $W_i = W_i + \Delta W_i$

Incremental Stochastic Gradient Descent

- Batch mode : gradient descent $w=w - \eta \nabla E_D[w]$ over the entire data D $E_D[w]=1/2\Sigma_d(t_d-o_d)^2$
- Incremental mode: gradient descent
 w=w η ∇E_d[w] over individual training examples d
 E_d[w]=1/2 (t_d-o_d)²

Incremental Gradient Descent can approximate Batch Gradient Descent arbitrarily closely if η is small enough

Comparison Perceptron and Gradient Descent Rule

Perceptron learning rule guaranteed to succeed if

- Training examples are linearly separable
- Sufficiently small learning rate η

Linear unit training rules uses gradient descent

- Guaranteed to converge to hypothesis with minimum squared error
- Given sufficiently small learning rate η
- Even when training data contains noise
- Even when training data not separable by H

Sigmoid Unit

 $x_{0=1}$

W₁

 W_2

W

Xa

 W_0 net= $\sum_{i=0}^{n} W_i X_i$ $\sigma(x)$ is the sigmoid function: $1/(1+e^{-x})$ $d\sigma(x)/dx = \sigma(x) (1 - \sigma(x))$

Derive gradient decent rules to train:

one sigmoid function

 $\partial E/\partial W_i = -\Sigma_d(t_d - O_d) O_d(1 - O_d) X_i$

 Multilayer networks of sigmoid units backpropagation avrilov Kyung Hee University

 $o = \sigma(net) = 1/(1 + e^{-net})$

Backpropagation Algorithm

- Initialize each w_i to some small random value
- Until the termination condition is met, Do
 - For each training example <(x₁,...x_n),t> Do
 - Input the instance (x₁,...,x_n) to the network and compute the network outputs o_k
 - For each output unit k

$$\delta_k = O_k (1 - O_k) (t_k - O_k)$$

For each hidden unit h

•
$$\delta_h = o_h (1 - o_h) \sum_k w_{h,k} \delta_k$$

For each network weight w_i Do

•
$$W_{i,j} = W_{i,j} + \Delta W_{i,j}$$
 where
Andrey V. Gavrilov
 $\Delta W_{i,j} = \eta \delta_j X_{i,j}$ Kyung Hee University

Backpropagation

- Gradient descent over entire *network* weight vector
- Easily generalized to arbitrary directed graphs
- Will find a local, not necessarily global error minimum -in practice often works well (can be invoked multiple times with different initial weights)
- Often include weight *momentum* term

$$\Delta W_{i,j}(n) = \eta \, \delta_j \, X_{i,j} + \alpha \, \Delta W_{i,j} \, (n-1)$$

- Minimizes error training examples
 - Will it generalize well to unseen instances (over-fitting)?
- Training can be slow typical 1000-10000 iterations (use Levenberg-Marquardt instead of gradient descent)
- Using network after training is fast Andrey V. Gavrilov Kyung Hee University

8-3-8 Binary Encoder - Decoder

8 inputs

8 outputs

A target function:

Input		Output
10000000	>	10000000
01000000	\rightarrow	01000000
00100000		00100000
00010000		00010000
00001000	>	00001000
00000100		00000100
00000010		00000010
00000001	_	00000001
Andrey V. Gavrilov		

Can this be learned??

Hidden values .89 .04 .08 .01 .11 .88 .01 .97 .27 .99 .97 .71 .03 .05 .02 .22 .99 .99 .80 .01 .98 .60 .94 .01

Sum of Squared Errors for the Output Units

Hidden Unit Encoding for Input 0100000

Convergence of Backprop

Gradient descent to some local minimum

- Perhaps not global minimum
 - Add momentum
 - Stochastic gradient descent
 - Train multiple nets with different initial weights

Nature of convergence

- Initialize weights near zero
- Therefore, initial networks are near-linear
- Increasingly non-linear functions possible as training progresses

Expressive Capabilities of ANN

Boolean functions

- Every boolean function can be represented by network with single hidden layer
- But might require exponential (in number of inputs) hidden units

Continuous functions

- Every bounded continuous function can be approximated with arbitrarily small error, by network with one hidden layer
- Any function can be approximated to arbitrary accuracy by a network with two hidden layers

Two tasks solved by MLP

- Classification (recognition)
 - Usually binary outputs
- Regression (approximation)
 - Analog outputs

Advantages and disadvantages of MLP with back propagation

- Advantages:
 - Guarantee of possibility of solving of tasks
- Disadvantages:
 - Low speed of learning
 - Possibility of overfitting
 - Impossible to relearning
 - It is needed to select of structure for solving of concrete task (usually it is problem)

Increase of speed of learning

- Preprocessing of features before getting to inputs of percepton
- Dynamical step of learning (in begin one is large, than one is decreasing)
- Using of second derivative in formulas for modification of weights
- Using hardware implementation

Fight against of overfitting

Don't select too small error for learning or too large number of iteration

Choice of structure

Using of constructive learning algorithms

- Deleting of nodes (neurons) and links corresponding to one (prunning networks)
- Appending new neurons if it is needed (growth networks)
- Using of genetic algorithms for selection of suboptimal structure

mpossible to relearning

Using of constructive learning algorithms

- Deleting of nodes (neurons) and links corresponding to one
- Appending new neurons if it is needed
- This is incremental learning