
Machine Learning

Lecture 9
Recurrent multi-layer neural 

networks
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Recurrent Networks

• Feed forward networks:
– Information only flows one way
– One input pattern produces one output
– No sense of time (or memory of previous state)

• Recurrency
– Nodes connect back to other nodes or themselves
– Information flow is multidirectional
– Sense of time and memory of previous state(s)

• Biological nervous systems show high levels of 
recurrency (but feed-forward structures exists too)
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Recurrent Connections and 
Sequences

• A sequence is a succession of patterns that relate to the 
same object. 

• For example, letters that make up a word or words that 
make up a sentence. 

• Sequences can vary in length. This is a challenge. 
• How many inputs should there be for varying length 

inputs?
• Several feed-forward alternatives: shift registers, tapped 

delay lines, etc
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The simple recurrent network
• Jordan network has connections that feed back from the 

output to the input layer and also some input layer units 
feed back to themselves. 

• Useful for tasks that are dependent on a sequence of a 
successive states.

• The network can be trained by backpropogation.
• The network has a form of short-term memory.
• Simple recurrent network (SRN) has a similar form of 

short-term memory.
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Jordan recurrent network  
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Elman Nets (SRN)

• Elman nets are feed forward networks with partial 
recurrency 

• Unlike feed forward nets, Elman nets have a memory
or sense of time
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Robot sensory prediction with SRN
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Short-term memory in SRN

• The context units remember the previous 
internal state.

• Thus, the hidden units have the task of 
mapping both an external input and also 
the previous internal state to some desired 
output.
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• An SRN can predict the next item in a sequence 
from the current and preceding input.

• In an SRN the hidden units are fed back into the 
input layer.

• That is: The hidden units are copied into input 
units. Input units supply weighted sums into 
hidden units in the next time step. 
********************

• The hidden units represent an internal reduced 
representation of the data in the sequence 
that precedes the current input.
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• The reduced representation provides context which is 
essential for certain tasks.

• As an example SRN can learn to solve XOR problem.

• Input – 101000011110101….. 
– Bit 3 is XOR of bit 1 and 2, bit 6 is XOR of 4 and 5, 

and so on

• An SRN with 1 input, two context, two hidden and one 
output unit was trained on a sequence of 3000 bits.

input: 1 0 1 0 0 0 0 1 1 1 1 0 1 0 1. . .
output: 0 1 0 0 0 0 1 1 1 1 0 1 0 1 ?. . .
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A recurrent backpropogation
network

• A backpropogation network need not be strictly 
feedforward and can have recurrent 
connections. 

• A unit can feed to itself, to units in the same or 
lower levels.

• A recurrent connection feeds back activation that 
will affect the output from the network during 
subsequent iterations.

• For every recurrent network there is a 
feedforward network with identical behavior.
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A recurrent backpropogation network 
(Connections from output to input layer)
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An expanded version
of the network

in the previous figure
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Unrolling idea
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Unrolling idea (2)



Andrey V. Gavrilov                              
Kyung Hee University

17

Error back propagation through time
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Backprop Through Time (2)

• During training a pattern is presented to the 
network and a feedforward pass is made. 

• Each network copy corresponds to a time step. 
• The weight changes calculated for each network 

copy are summed before individual weights are 
adapted.

• The set of weights for each copy(time step) 
always remain the same.
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Error back propagation through time (3)
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Real-Time Recurrent Learning 
(RTRL) (Williams&Zipser, 1989)

• Trains a network without unrolling by 
deriving a recurrence for weight updates.

• The algorithm is “real-time” in the sense 
that the weights can be updated while the 
input sequence is being applied.



Andrey V. Gavrilov                              
Kyung Hee University

21

Real-Time Recurrent Learning (2)
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Real-Time Recurrent Learning (3)
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Difficulty of usage of gradient descend 
learning algorithms in RNN

• These algorithms often are sensitive to 
details of algorithm, in particular, to 
number of time steps unrolled in the case 
of back propagation through time
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Sequence Completion Example
• Rumelhart et. al. (1986) performed experiments with 

recurrent connections. 
• Train a network to perform sequence completion.
• A sequence consisted of 6 characters: two letters from 

the set {A,B,C,D,E} and 4 being numbers from the 
integer set {1,2,3}.

• For example, A can denote “12” and C can denote “13”.
• The complete sequence prefixed by AC would be 

“AC1213”.
• The complete sequence prefixed by AA would be 

“AA1212”.
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Rumelhart network

• The network has:
– 5 input units, one for each letter.
– 3 output units, one for each number.
– 30 hidden units.

– Each hidden unit is connected to itself and 
every other hidden unit.
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Training Steps
• T1: Input unit corresponding to the first letter is 1 and other inputs 

are off.
• T2: Input unit corresponding to the second letter is 1 and other

inputs are off.
• T3: The target output is the third character in the sequence.
• T4: The target output is the fourth character in the sequence.
• T5: The target output is the fifth character in the sequence.
• T6: The target output is the sixth character in the sequence.

Output generation at different 
time steps.
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Rumelhart Network Results

• All hidden and output unit activations 
started at 0.2

• Network is trained on 20 sequences.
• Given first two characters, the rest of the 

characters were completed in five test 
cases.

• The completion could be achieved even if 
there were delays between the 
presentation of the first two letters.
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Classic experiment on language acquisition and processing
(Elman, 1990)

• Task
– Elman net to predict successive words in sentences.

• Data
– Suite of sentences, e.g.

• “The boy catches the ball.”
• “The girl eats an apple.”

– Words are input one at a time
• Representation

– Binary representation for each word, e.g.
• 0-1-0-0-0 for “girl”

• Training method
– Backpropagation
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• Internal representation of words
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Grammatical inference by RNN
(S.Lawrence, 1996)

Asterisk marks the ungrammaticality.
Task is grammaticality judgment of sentence.

Different following RNNs was compared:  `
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A Frasconi-Gori-Soda locally recurrent 
network. Not all connections are shown fully
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A Narendra & Parthasarathy recurrent network. 
Not all connections are shown fully
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An Elman recurrent network. Not all 
connections are shown fully
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A Williams & Zipser fully recurrent network. 
Not all connections are shown fully
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Parts of speech used in 
experiments 
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A simple grammar
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Examples of part-of-speech tagging
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Depiction of how the neural network inputs come 
from an input window on the sentence. The 

window moves from the beginning to the end of 
the sentence
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Results of comparison

Std. dev. – the standart deviation value.
The confidence is the average confidence of the networks.
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Results of 
comparison 
with other 
methods

Nearest-neighbors
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Conclusions about applications of 
RNN for learning of NL

• Nearest-neighbors, decision trees, feedforward networks do 
not learn parsimonious representations of the grammar –
they work by finding statistically close matches in the 
training data. They are expected to require a much larger 
amount of data for similar performance

• RNN may be learned an appropriate grammar for 
discriminating between sharply grammatical/ungrammatical 
pairs. 100% correct classification of the training data is not 
possible using only a small temporal input window without 
forming internal states

• Generalization is limited by the amount of data available
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