Machine Vision

Lecture 11
Particle filters.
Based on lecture of
Michael Pfeiffer, 2004
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The Tracking Problem

Given Sequence of Images
Find center of moving object
Camera might be moving or stationary

We assume: We can find object in individual
Images.
The Problem: Track across multiple images.

Is a fundamental problem in computer vision
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Methods

Bayes Filter

Kalman Filter Particle Filter

Extended
Kalman Filter

Uncented
Kalman Filter
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Problem Statement

= Tracking the state of a system as it
evolves over time

 We have: Sequentially arriving (noisy or
ambiguous) observations

 We want to know: Best possible
estimate of the hidden variables
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lllustrative Example: Robot Localization

e
Prob 0 1

t=0
Sensory model: never more than 1 mistake
Motion model: may rot.&xecuteraction with small prob. 6
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lllustrative Example: Robot Localization

Prob 0 1

t=1
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lllustrative Example: Robot Localization

Prob 0 1

t=2
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lllustrative Example: Robot Localization

Prob 0 1

t=3
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lllustrative Example: Robot Localization

Prob 0 1

t=4

UCLab, Kyung Hee University
Andrey Gavrilov

10



lllustrative Example: Robot Localization

— 3

Prob 0 1

t=5
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Applications

Tracking of aircraft
positions from radar

Estimating
communications signals
from noisy
measurements :
Predicting economical BN T .
data -
Tracking of people or
cars in surveillance
videos
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Bayesian Filtering / Tracking Problem

Unknown State Vector X,.. = (Xg, --» X¢)
Observation Vector z, .,

Find PDF p(Xy.¢ | Z1.1) ... posterior distribution
or p(X, | z1.) .. filtering distribution

Prior Information given:

P(X,) ... prior on state distribution
pP(z; | Xo) ... sensor model
P(Z; | Xi1) ... Markovian state-space model
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Sequential Update

Storing all incoming measurements Is
Inconvenient

Recursive filtering:

Predict next state pdf from current estimate

Update the prediction using sequentially arriving
new measurements

Optimal Bayesian solution: recursively
calculating exact posterior density
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Bayesian Update and Prediction

Prediction

p(xt | Zl:t—l) :j p(xt | Xt—l) p(xt—l | Zl:t—l)dxt—l

Update

P(Z | %) POX | Z411)
p(zt | Zl:t—l)
P(z121) = | Pz %) POX | 24,) X
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Kalman Filter

Optimal solution for linear-Gaussian
case

Assumptions:

State model Is known linear function of last
state and Gaussian noise signal

Sensory model i1s known linear function of
state and Gaussian noise signal

Posterior density is Gaussian
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Kalman Filter: Update Equations

X, =FXx_ +Vv._, V. ~N(0,Q.)
Z, =HX +n, n,~N(,R,)
F., H, :known matrices
My, = F, My
P(Xy | Z1y) = N(X | M _yiys Pt—1|t—1) Pt|t_1 =Q_, +F Pt—1|t—1 FtT
P(X [ Zye) = N (X [ My, Py My, =My, + K (z, —H My )
P(X [ Z,) = N (X [ My, Bye) Pt = Pea —KeH R
S, = Hth_lHtT +R,
K, =P HS’
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Limitations of Kalman Filtering

Assumptions are too strong. We often find:
Non-linear Models
Non-Gaussian Noise or Posterior
Multi-modal Distributions
Skewed distributions

Extended Kalman Filter:
local linearization of non-linear models
still limited to Gaussian posterior
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Grid-based Methods

Optimal for discrete and finite state
space

Keep and update an estimate of
posterior pdf for every single state

No constraints on posterior (discrete)
density
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Limitations of Grid-based Methods

Computationally expensive
Only for finite state sets

Approximate Grid-based Filter

divide continuous state space into finite
number of cells

Hidden Markov Model Filter

Dimensionality increases computational
costs dramatically
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Many different names...

Particle Filters

« (Sequential) Monte < Interacting Particle

Carlo filters Approximations
= Bootstrap filters = Survival of the fittest
» Condensation - ..
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Particle Filters: Basic ldea

X
N~ setofn particles X,

px eX) = px|z;)  (equality for n Too)

UCLab, Kyung Hee University
Andrey Gavrilov

24



Sample-based PDF Representation

Monte Carlo characterization of pdf:

Represent posterior density by a set of
random I.1.d. samples (particles) from the

pdf p(XO:tlzl:t)

For larger number N of particles equivalent
to functional description of pdf

For oo approaches optimal Bayesian
estimate
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Sample-based PDF Representation

Regions of high

density
Many particles N |
Large weight of 1le e el
particles

Uneven partitioning

Discrete N i
appr0X|mat|On for PN (XO:t ‘ Z1:t) — izz;wt 8(XO:t o XO:t)
continuous pdf
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Importance Sampling

« Draw N samples x,..".from Importance
sampling distribution m(Xy.(|Z1.¢)

p(XO't | Zl't)
W(X,, ) = e
( O.t) 7-':(XO:'[ | Zl:t)

* Importance weight

= Estimation of arbitrary functions f.:

| N ( ft) - Zi:1 ft(x(():t))wt(l)g Wt(l) = O:t

N (i)
ZjZIW(OZJt

N a.s.
y(F0) 2 101 = [ 1106,) PO | Y1) Oy
N—c0 UCLab, Kyung Hee University
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Sequential Importance Sampling (SIS)

Augmenting the samples
T(Xos | Z1s) =T XKooy | Zygoy ) TOK | Xogys Zig) =
= TT(Xoey | Zpoy) TOX | X5 Z,)
X ~ (% | X, 2,)

Weight update

2w P X PO X
(%" | x4, 2,)

(i)
Wt
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Degeneracy Problem

After a few Iterations, all but one
particle will have negligible weight

Measure for degeneracy: Effective
sample size

N : :
T varw) w; ... true weights at time t

N

Small N+ Indicates severe degeneracy
Brute force solution: Use very large N

UCLab, Kyung Hee University
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Choosing Importance Density

Choose ©t to minimize variance of
welights

Optimal solution: m(x [x5.2)=p(x x4.2)
= w” e W p(z, |
Practical solution zxx x®,2)=px |x)
= W" o Wiy p(z, | %)

Importance density = prior
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Resampling

Eliminate particles with small importance
weights

Concentrate on particles with large weights

Sample N times with replacement from the
set of particles x,{) according to importance
weights w,()

~ourvival of the fittest
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Sampling Importance Resample
Filter: Basic Algorithm

1. INIT, t=0
for i=1,..., N: sample x,0~p(x,); t:=1;

2. IMPORTANCE SAMPLING
for i=1,..., N: sample x,® ~ p(XI%.{")
Xo:4" 1= (0.1 ¥, %)
for i=1,..., N: evaluate importance weights w,(=p(z|x,("))
Normalize the importance weights

3. SELECTION / RESAMPLING

resample with replacement N particles x,.,) according to the
importance weights

Set t:=t+1 and go to step 2
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Basic Particle Filter Algorithm

Initialization:
X, < n particles x, M~ p(x,)

particleFilters(X; , ){

for i=1ton

_1[‘]) (prediction)

W= p(z,| X' (importance weights)
endfor
fori=1ton

include x,Min X, with probability oc w,!! (resampling)

POt 12,0000 = 770 1) RO PO, 2. ) X,

PO €X) ~ %12, 1,0 ) 33
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Variations

Auxiliary Particle Filter:

resample at time t-1 with one-step
lookahead (re-evaluate with new sensory
iInformation)

Regularisation:

resample from continuous approximation
of posterior p(xz;.;)
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Visualization of Particle Filter

] i=1,....N=10 particles ‘
unweighted measure o660 o osco o o FHNT

Compute importance
weights = p(X.112;.¢.1)

resampling

~(i) (i)
X Wi

x5 N

y ¥

@ . ®
T Y
E =]
rlI

move particles

predict p(x,[z;...,) AR S
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Particle Filter Demo 1
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Particle Filter Demo 2
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Particle Filter Demo 3
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Particle Filter Demo 4

Time Step 0 Time Step 1 Time Step 2
= o =
o
b " x X
Time Step 2 Time Step 4 Time Step 5
o
o
I el
T tef Time Step 7 T tef
=
[
{ " Lo d
— e — —
X X X

moving (sharp) Gayssjan + uniform, N=1000 particles,,

yung 1versity
Andrey Gavrilov



Particle Filter Demo 5

mixture of two
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Obtaining state estimates from particles

Any estimate of a function f(x;) can be
calculated by discrete PDF-approximation

e[ o]= 30 w7

Mean: E[Xt]=ﬁZN wx”

MAP-estimate: particle with largest weight

Robust mean: mean within window around
MAP-estimate
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Pros and Cons of Particle Filters

Estimation of full -

PDFs

Non-Gaussian
distributions

e.g. multi-modal

Non-linear state and .
observation model

Parallelizable

Degeneracy problem

High number of
narticles needed

Computationally
expensive

Linear-Gaussian
assumption is often
sufficient
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Mobile Robot Localization

= Animation by
Sebastian
Thrun,
Stanford
h

ttp://robots.
stanford.edu
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Positioning Systemst

= Track car position in
given road map

e Track car position from
radio frequency
measurements

» Track aircraft position
from estimated terrain
elevation

« Collision Avoidance
(Prediction)

» Replacement for GPS

1: Gustafsson, et.al.: Particle Filters for %Jﬁi@hirﬁ}’ﬂ%&&%p&weﬁé@king. |EEE Transactions on Signal ~ 42
Processing Vol. 50, 2002 Andrey Gavrilov



Model Estimation

Tracking with multiple motion-models
Discrete hidden variable indicates active model (manoever)

Recovery of signal from noisy measurements
even Iif signal may be absent (e.g. synaptic currents)
mixture model of several hypotheses

Neural Network model selection [de Freitas]!

estimate parameters and architecture of RBF network from
iInput-output pairs
on-line classification (time-varying classes)

1: de Freitas, et.al.: Sequential Monte CU@LI\Abt,th&lfg Heer&hﬁe‘emtgfs. in: Doucet, et.al.: Sequential Monte46
Carlo Methods in Practice, Springer Verlag, Zooggmdrey Gavrilov



Other Applications

Visual Tracking
e.g. human motion (body parts)
Prediction of (financial) time series
e.g. mapping gold price - stock price
Quality control in semiconductor industry
Military applications
Target recognition from single or multiple images
Guidance of missiles
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Sources

Doucet, de Freitas, Gordon: Sequential Monte
Carlo Methods in Practice, Springer Verlag,
2001

Arulampalam, Maskell, Gordon, Clapp: A
Tutorial on Particle Filters for on-line Non-
linear / Non-Gaussian Bayesian Tracking,
IEEE Transactions on Signal Processing, Vol.
50, 2002
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