Machine Vision

Lecture 15 Machine Vision in manufacturing

- Tasks
- Why Machine Vision?
- Examples
- Computational requirements and using of DSP
- Inspection of surfaces

Automation & Machine Vision

Motoman SP100 robot with vacuum gripper palletizes cases of filters.

Robot and Vision

Kinds of tasks in manufacturing for computer vision

- Inspection of product or material
 - Inspection of quality of surface
 - Inspection of structure of material (detail) (e.g., by x-ray)
 - Inspection of quality of color
 - Non-contact measurement
- Assistance in assembling
 - Checking of directions of details
 - Checking of positions of details
 - Checking of relations between details in assembly
- In security systems
- In robotics

An Industrial Computer Vision System

Basic Components in a Typical Configuration

Laboratory Setup

Factory Setup

UCLab, K Andrey Gavilov

Why Machine Vision?

- Many production defects are visibly identifiable
- Manual Inspection used to be the only option
- Many limitations and so automation was attempted before technology was ready
- Over the years it has improved to become an essential part of innumerable manufacturing operations

Manual Inspection

Andrey Gavnov

Comparison with Manual Inspection

Manual Inspection using Inspectors	Automated Inspection using Machine Vision
Subjective – Operator	Objective and
Dependent	Repeatable
Error Prone – Fatigue	24x7 Operation with
/ Attention Span	no Errors
Slow – Offline Sample	Very Fast – 100%
Inspection	Online Inspection

Examples (developed by Texas Instruments)

Chip Inspection

PCB Inspection

Bottle filling Inspection

Label Inspection

Brake Assembly Inspection

UCLab, Kyung Hee University Andrey Gavilov

Brake Assembly Inspection (2)

Machine Vision Based Drum Brake Inspection System

Rice Sorting Machine

Andrey Gavilov

Pencil Sorting Machine

Absence of Lead

Roughness in wood

Load Offest

Wood Defect

High Speed Deterministic Sorting at 20 Pencils/sec

Computational requirements and using of DSP

Image processing

- Computationally very intensive
- Typical processes are filtering and correlations
- Both use multiple and accumulate (MAC) as the basic operations
- Highly suited for DSPs
- Consider an example to understand the computational demands

Automated
 Assembly
 Requirements
 Verify

- Orientation
- ➤ Length
- Diameter of Head
- Diameter of Bolt
- Presence of Thread
- Thread Pitch

Could use a Pattern Match Select the Imaging Area (say 640 x 480 pixels) □ Select the Template (say 400 x 200 pixels) Warning – lots of

simplifications in what follows!

- Consider Simple Pixel Correlation
- Search within the area considering the simplest of constraints
 - ≥ 240 x 280 positions
 - 30 angular positions (considering +/- 15 degrees at 1 degree resolution)

- Correlation -Multiply and Accumulate (MAC)
 Pattern 400x200=80,000 pixels – 8 bits/pixel
 Repeat for about 2
 - million positions (240x280x30)

 \Box MAC Operations = 80,000 x 240 x 280 x 30 = 161,000 Million □Consider DSP with 5,000 MIPS Computation Time = 32 seconds! □Requirement is 10 bolts/second! Improved considerably using Pyramid Search Techniques – reduces to millisecs

Computation Speeds and Production Rates

Year	Computation Speed	Production Rates (assuming roughly 10% improvement / year)
1995	50 MIPS	1 Parts/Sec
2005	5000 MIPS	3 Parts/Sec

- Advances in Non-Semiconductor Manufacturing has been "normal"
- Computing Speeds have grown tremendously making Machine Vision based Automated Inspection possible

DSP Innovations Leveraged for Machine Vision

- Direct Memory Access
 - Machine Vision involves very high data
- rates
- Pipelining and on chip L1 and L2 Cache
 SIMD / VLIW
- Multicore
 - DAVINCI (C64x+ DSP and ARM)

Inspection of surfaces

Inspection of Complex Surfaces

(Centre for Innovative Manufacturing & Machine Vision Systems (CIMMS) UWE, Bristol)

Typical complex surface

Surface reflectance

(Albedo)

Surface profile/topography

(Bump map)

Photometric Stereo

 Illuminating an object from three different directions produces three different images...

Photometric Stereo

• The observed brightness at a given point is a function of both the <u>reflectivity and the</u> <u>orientation of the surface</u> at that point

• Three images thus give us <u>three equations with</u> <u>three unknowns</u>

• We can solve to isolate both the shape and the reflectance of the surface university Andrey Gavilov 35

Prototype tile inspection system

Example Results

Albedo (2D)

Raw image of surface Possessing concomitant 2D and 3D features

Isolation of two- and three-dimensional data

Example of virtual rendering of the captured 3D surface data

Note altered surface appearance as user moves virtual UCLablightHSOURCE Andrey Gavilov 40

Visual Inspection of Polished Stone (VIPS)

- Aim to <u>develop imaging techniques</u> suitable for the on-line surface inspection of polished stone in the field.
- <u>Classify and quantify surface defects</u> in the presence of acceptable natural stone features.
- Allow potential for closed-loop control of the polishing process.
- Partners in Italy and Portugal.

Problems: - Very large images (64 Mega-pixels)

- Very large indistinct scratches (dia 10 x image)
- Noisy images