Machine vision Lecture 2

The Visual System and Visual Performance

The Visible Spectrum

The eye

 Information filter, no perfect projection of the world. Sensory organ forming a representation.
 Other organs (in combination with visual perception) can be used to make a representation of the world.

Higher-order species

- Single lens.
- Molluscs (squid, octopus) and chordates (fish, amphibians, birds, mammals & humans).

- Multilens compound eye
- Arthropods

 (insects,
 lobsters, crabs,
 spiders,
 centipedes).

Autonomous Systems - Tony Belpaeme

Higher-order species (2)

- · Both have a 'mosaic' structure.
- · Single lens forms a wider angle image.
- Compound eye: less resolution, no focus

Autonomous Systems - Tony Belpaeme

Anatomy of the Eye

Illustration by Mark Ericksen, St. Luke's Cataract and Laser Center, StLukesEye.com UCLab, Andrey Gavrilov

The Eye (2)

- Cornea
 - Protection
 - Focusing
- Aqueous Humor
 - Shape
 - Nutrition
- Iris
 - Light control
 - Focusing

The Eye (3)

- Lens
 - Focusing
 - Accommodation
- Vitreous Humor
 - Shape
- Retina
 - Rods: black & white, night vision
 - Cones: color, day vision
 - Fovea: sharpest vision (concentration of cones)

The Eye (4)

- Optic Nerve
 - Nerve signals to brain
 - Optic Disk: blind spot
- Eye Muscles
 - Eye movement
 - Convergence

Visual Performance

- Brightness
- Visual Angle
- Visual Acuity
- Color
- Visual Field

Brightness

- Relative amount of light reflected from an object produces a sensation of lightness or brightness.
- Brightness is related to the luminance of light as well as a subjective response to color

Luminous Intensity

A point light source giving off photons equally in all directions, with a luminous intensity of **x** <u>candelas</u>

Luminous Flux

Illuminance

The photocell is placed flat on the desk, and is in effect counting the number of photons falling on it - i.e. measuring illuminance in <u>lumens per square metre (LUX)</u>

- Illumination/Illuminance: The amount of light striking any point on the inside surface of a sphere surrounding the light source (Luminous flux/unit area)
 - Foot candle: 1 lumen/square foot
 - Lux: 1 lumen/square meter
- Luminance: The amount of light per unit area leaving (reflected from) a surface
 - Foot Lamberts: 1 lumen/square foot
 - Candelas/square meter

Luminance, milliLamberts (mL)	Example	
1,000,000,000	sun's surface at noon	
1,000,000	tungsten filament	
10,000	white paper in sunlight	
1,000	earth on clear day	
100	earth on cloudy day	
10	white paper in reading light	
1	white paper 1 ft from candle	
0.001	earth in moonlight	
0.0001	white paper in starlight	

Note: 1 foot-Lambert (ft-L) = 0.929 mL, so 1 ft-L ~ 1 mL.

Luminance (2)

Threshold of detectability
 1 x 10 ⁻⁶ mL

Threshold of pain
 3 x 10 ⁴ mL

Limits to discriminability3 - 4 levels

Visual Angle (minutes of arc)

Visual Angle of Familiar Objects

<u>Object</u>	Distance	Visual Angle
Sun	93,000,000 mi	30'
Moon	240,000 mi	30'
Quarter	arm's length	2°
Quarter	90 yd	1'
Quarter	3 mi	1**
Lowercase pica type	reading distance	e 13'

Cumulative Probability of Detection

Variation in Visual Performance Across the Retina

Minimum Separable Acuity

- Also called gap resolution
- Smallest space eye can detect between parts of a target (visual object).

Minimum Separable Acuity as Function of Contrast

Minimum Perceptible Acuity

- Also called spot detection.
- Eye's ability to detect smallest possible target.

Minimum Perceptible Acuity as Function of Contrast and Background Luminance

Vernier Acuity

 Smallest lateral displacement of one line from another that can be detected.

Color

- Attributes
 - hue: red, green, blue ...
 - saturation: vividness of hue
 - brightness: luminance
- Relative discrimination
 - thousands of distinct colors
- Absolute discrimination
 - 24 distinct colors
 - recommended: 9

Color Spaces

- Each image is an array of 208 x 160 pixels
- Each pixel is a 3 dimensional value
 - Each dimension is called a channel
- There are multiple different possible color representations
 - RGB R=red, G=green, B=blue
 - YUV Y=brightness, UV=color
 - HSV H=hue, S=saturation, V=brightness
- AIBO camera provides images formatted in the YUV color space

Color Spaces - RGB

Color Spaces – YUV

Color Spaces – YUV

Color Spaces – HSV

www.wordig.com/definition/HSV_color_space

Color Spaces - Discussion

RGB

- Handled by most capture cards
- Used by computer monitors
- Not easily separable channels

YUV

- Handled by most capture cards
- Used by TVs and JPEG images
- Easily workable color space

HSV

- Rarely used in capture cards
- Numerically unstable for grayscale pixels
- Computationally expensive to calculate

Visual Field

Visual Impairments

Myopia: Nearsightedness

Hyperopia: Farsightedness

Presbyopia: Loss of accommodation

Night Blindness: Reduced rod vision

Color Blindness: Inability to discriminate

Tunnel Vision: Reduced field of view

Other Factors Affecting Visual Performance

Contrast: optimum level exists

- Illumination: optimum level exists
- Time: positive relationship
- Luminance Ratio: see contrast

Other Factors Affecting Visual Performance (2)

Glare: negative relationship

Movement: negative relationship

Age: negative relationship

Drugs: some drugs impair vision