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Contents

In this lecture we will look at more spatial 
filtering techniques

– Spatial filtering refresher
– Sharpening filters

• 1st derivative filters
• 2nd derivative filters

– Combining filtering techniques
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Spatial Filtering Refresher

r s t

u v w

x y z

Origin x

y Image f (x, y)

eprocessed = v*e + 
r*a + s*b + t*c + 
u*d + w*f + 
x*g + y*h + z*i

Filter
Simple 3*3

Neighbourhood e 3*3 Filter

a b c

d e f

g h i
Original Image 

Pixels

*

The above is repeated for every pixel in the 
original image to generate the smoothed image
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Sharpening Spatial Filters

Previously we have looked at smoothing 
filters which remove fine detail
Sharpening spatial filters seek to highlight 
fine detail

– Remove blurring from images
– Highlight edges

Sharpening filters are based on spatial 
differentiation
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Spatial Differentiation

Differentiation measures the rate of change of 
a function
Let’s consider a simple 1 dimensional 
example
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1st Derivative

The formula for the 1st derivative of a 
function is as follows:

It’s just the difference between subsequent 
values and measures the rate of change of 
the function
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1st Derivative (cont…)
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2nd Derivative

The formula for the 2nd derivative of a 
function is as follows:

Simply takes into account the values both 
before and after the current value
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2nd Derivative (cont…)
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1st & 2nd Derivatives

Comparing the 1st and 2nd derivatives we 
can conclude the following:

– 1st order derivatives generally produce thicker 
edges

– 2nd order derivatives have a stronger 
response to fine detail e.g. thin lines

– 1st order derivatives have stronger response 
to grey level step

– 2nd order derivatives produce a double 
response at step changes in grey level
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Using Second Derivatives For Image 
Enhancement

The 2nd derivative is more useful for image 
enhancement than the 1st derivative

– Stronger response to fine detail
– Simpler implementation
– We will come back to the 1st order derivative 

later on
The first sharpening filter we will look at is 
the Laplacian

– Isotropic
– One of the simplest sharpening filters
– We will look at a digital implementation
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The Laplacian

The Laplacian is defined as follows:

where the partial 1st order derivative in the x
direction is defined as follows:

and in the y direction as follows:
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The Laplacian (cont…)

So, the Laplacian can be given as follows:

We can easily build a filter based on this
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The Laplacian (cont…)

Applying the Laplacian to an image we get a 
new image that highlights edges and other 
discontinuities
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But That Is Not Very Enhanced!

The result of a Laplacian filtering 
is not an enhanced image
We have to do more work in 
order to get our final image
Subtract the Laplacian result 
from the original image to 
generate our final sharpened 
enhanced image

Laplacian
Filtered Image

Scaled for Display
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Laplacian Image Enhancement

In the final sharpened image edges and fine 
detail are much more obvious
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Simplified Image Enhancement

The entire enhancement can be combined 
into a single filtering operation

),1(),1([),( yxfyxfyxf −++−=
)1,()1,( −+++ yxfyxf

)],(4 yxf−

fyxfyxg 2),(),( ∇−=

),1(),1(),(5 yxfyxfyxf −−+−=
)1,()1,( −−+− yxfyxf



18
of
30

Simplified Image Enhancement (cont…)

This gives us a new filter which does the 
whole job for us in one step
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Variants On The Simple Laplacian

There are lots of slightly different versions of 
the Laplacian that can be used:
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1st Derivative Filtering

Implementing 1st derivative filters is difficult in 
practice
For a function f(x, y) the gradient of f at 
coordinates (x, y) is given as the column 
vector:
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1st Derivative Filtering (cont…)

The magnitude of this vector is given by:

For practical reasons this can be simplified as:
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1st Derivative Filtering (cont…)

There is some debate as to how best to 
calculate these gradients but we will use:

which is based on these coordinates
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Sobel Operators

Based on the previous equations we can 
derive the Sobel Operators

To filter an image it is filtered using both 
operators the results of which are added 
together
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Sobel Example

Sobel filters are typically used for edge 
detection
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Combining Spatial Enhancement 
Methods

Successful image 
enhancement is typically not 
achieved using a single 
operation
Rather we combine a range 
of techniques in order to 
achieve a final result
This example will focus on 
enhancing the bone scan to 
the right
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Combining Spatial Enhancement 
Methods (cont…)
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Combining Spatial Enhancement 
Methods (cont…)
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Combining Spatial Enhancement 
Methods (cont…)

Compare the original and final images
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Summary

In this lecture we looked at:
– Sharpening filters

• 1st derivative filters
• 2nd derivative filters

– Combining filtering techniques


