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Contents

In this lecture we will look at image 
enhancement in the frequency domain

– Jean Baptiste Joseph Fourier
– The Fourier series & the Fourier transform
– Image Processing in the frequency domain

• Image smoothing
• Image sharpening

– Fast Fourier Transform
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Jean Baptiste Joseph Fourier

Fourier was born in Auxerre, 
France in 1768

– Most famous for his work “La 
Théorie Analitique de la 
Chaleur” published in 1822

– Translated into English in 1878: 
“The Analytic Theory of Heat”

Nobody paid much attention when the work 
was first published
One of the most important mathematical 
theories in modern engineering
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The Big Idea

=

Any function that periodically repeats itself can 
be expressed as a sum of sines and cosines of 
different frequencies each multiplied by a 
different coefficient – a Fourier seriesIm
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The Big Idea (cont…)

Notice how we get closer and closer to the 
original function as we add more and more 
frequencies
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The Big Idea (cont…)

Frequency 
domain signal 
processing 
example in 
Excel
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• Any periodic object can be represented by a 
summation of a series of cosine waves
• The Operation of Fourier transformation of an 
image replaces the image (real space) be a 
series of amplitudes and frequencies of the 
cosine waves that make it up
• Fourier space is also referred to as frequency 
space
• If there are repeats in the structure at specific 
frequencies, these will appear as peaks in 
Fourier space
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The Discrete Fourier Transform (DFT)

The Discrete Fourier Transform of f(x, y), for 
x = 0, 1, 2…M-1 and y = 0,1,2…N-1, 
denoted by F(u, v), is given by the equation:

for u = 0, 1, 2…M-1 and v = 0, 1, 2…N-1.
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DFT & Images

The DFT of a two dimensional image can be 
visualised by showing the spectrum of the 
images component frequencies
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DFT & Images (cont…)

Features from an image can even 
sometimes be seen in the Fourier spectrum 
of the image
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Scanning electron microscope 
image of an integrated circuit 

magnified ~2500 times

Fourier spectrum of the image
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The Inverse DFT

It is really important to note that the Fourier 
transform is completely reversible
The inverse DFT is given by:

for x = 0, 1, 2…M-1 and y = 0, 1, 2…N-1
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The DFT and Image Processing

To filter an image in the frequency domain:
1. Compute F(u,v) the DFT of the image
2. Multiply F(u,v) by a filter function H(u,v)
3. Compute the inverse DFT of the result
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Some Basic Frequency Domain Filters
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Smoothing Frequency Domain Filters

Smoothing is achieved in the frequency 
domain by dropping out the high frequency 
components
The basic model for filtering is:

G(u,v) = H(u,v)F(u,v)
where F(u,v) is the Fourier transform of the 
image being filtered and H(u,v) is the filter 
transform function
Low pass filters – only pass the low 
frequencies, drop the high ones
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Ideal Low Pass Filter

Simply cut off all high frequency components 
that are a specified distance D0 from the 
origin of the transform

changing the distance changes the behaviour 
of the filterIm
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Ideal Low Pass Filter (cont…)

The transfer function for the ideal low pass 
filter can be given as:

where D(u,v) is given as:

⎩
⎨
⎧

>
≤

=
0

0

),( if  0
),( if  1

),(
DvuD
DvuD

vuH

2/122 ])2/()2/[(),( NvMuvuD −+−=



17
of
41

Ideal Low Pass Filter (cont…)

Above we show an image, it’s Fourier 
spectrum and a series of ideal low pass 
filters of radius 5, 15, 30, 80 and 230 
superimposed on top of it
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Ideal Low Pass Filter (cont…)
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Original
image

Result of filtering 
with ideal low 
pass filter of 
radius 5

Result of filtering 
with ideal low 
pass filter of 
radius 30

Result of filtering 
with ideal low 
pass filter of 
radius 230

Result of filtering 
with ideal low 

pass filter of 
radius 80

Result of filtering 
with ideal low 

pass filter of 
radius 15
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Butterworth Lowpass Filters

The transfer function of a Butterworth 
lowpass filter of order n with cutoff frequency 
at distance D0 from the origin is defined as:
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Butterworth Lowpass Filter (cont…)
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Original
image

Result of filtering 
with Butterworth 
filter of order 2 and 
cutoff radius 5

Result of filtering 
with Butterworth 
filter of order 2 and 
cutoff radius 30

Result of filtering 
with Butterworth 
filter of order 2 and 
cutoff radius 230

Result of filtering 
with Butterworth 

filter of order 2 and 
cutoff radius 80

Result of filtering 
with Butterworth 

filter of order 2 and 
cutoff radius 15
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Gaussian Lowpass Filters

The transfer function of a Gaussian lowpass
filter is defined as:
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Gaussian Lowpass Filters (cont…)
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Original
image

Result of filtering 
with Gaussian 
filter with cutoff
radius 5

Result of filtering 
with Gaussian 
filter with cutoff
radius 30

Result of filtering 
with Gaussian 
filter with cutoff
radius 230

Result of 
filtering with 

Gaussian filter 
with cutoff
radius 85

Result of filtering 
with Gaussian 

filter with cutoff
radius 15
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Lowpass Filters Compared 

Result of filtering 
with ideal low 

pass filter of 
radius 15

Result of 
filtering with 
Butterworth filter 
of order 2 and 
cutoff radius 15

Result of filtering 
with Gaussian 

filter with cutoff
radius 15
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Lowpass Filtering Examples

A low pass Gaussian filter is used to 
connect broken text
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Lowpass Filtering Examples (cont…)

Different lowpass Gaussian filters used to 
remove blemishes in a photograph
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Lowpass Filtering Examples (cont…)

Original 
image

Gaussian 
lowpass filter

Processed 
image

Spectrum of 
original image
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Sharpening in the Frequency Domain

Edges and fine detail in images are 
associated with high frequency components
High pass filters – only pass the high 
frequencies, drop the low ones
High pass frequencies are precisely the 
reverse of low pass filters, so:

Hhp(u, v) = 1 – Hlp(u, v)



28
of
41

Ideal High Pass Filters

The ideal high pass filter is given as:

where D0 is the cut off distance as before
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Ideal High Pass Filters (cont…)

Results of ideal 
high pass filtering 

with D0 = 15

Results of ideal 
high pass filtering 

with D0 = 30

Results of ideal 
high pass filtering 

with D0 = 80Im
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Butterworth High Pass Filters

The Butterworth high pass filter is given as:

where n is the order and D0 is the cut off 
distance as before
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Butterworth High Pass Filters (cont…)

Results of 
Butterworth 

high pass 
filtering of 

order 2 with 
D0 = 15

Results of 
Butterworth 
high pass 
filtering of 
order 2 with 
D0 = 80

Results of Butterworth high pass 
filtering of order 2 with D0 = 30
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Gaussian High Pass Filters

The Gaussian high pass filter is given as:

where D0 is the cut off distance as before
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Gaussian High Pass Filters (cont…)

Results of 
Gaussian 
high pass 

filtering with 
D0 = 15

Results of 
Gaussian 
high pass 
filtering with 
D0 = 80

Results of Gaussian high 
pass filtering with D0 = 30
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Highpass Filter Comparison

Results of ideal 
high pass filtering 

with D0 = 15

Results of Gaussian 
high pass filtering with 

D0 = 15

Results of Butterworth 
high pass filtering of 
order 2 with D0 = 15
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Highpass Filtering Example
O
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Laplacian In The Frequency Domain
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Frequency Domain Laplacian Example

Original 
image

Laplacian
filtered 
image

Laplacian
image 
scaled

Enhanced 
image
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Fast Fourier Transform

The reason that Fourier based techniques 
have become so popular is the development 
of the Fast Fourier Transform (FFT) 
algorithm
Allows the Fourier transform to be carried 
out in a reasonable amount of time
Reduces the amount of time required to 
perform a Fourier transform by a factor of 
100 – 600 times!
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Can introduce periodicities where none are 
present
Edge effects


