Machine Vision

Lecture 7
Transformations of images.

Vectors

- Vector \mathbf{v} is an entity with magnitude (length) and direction
- Vector with magnitude 1 is normalized vector
- Not that does not have a location
- Two vectors with same magnitude and direction are equal, no matter where draw on the page (screen)

Vector addition

- $\mathbf{u}=\mathbf{V}+\mathbf{W}$

u

Andrey Gavrilov

Vector addition and subtruction

Real Vector Space

- Vector space allows to represent vectors symbolically
- Real vector space is the set of all ordered pairs of real numbers
- 2-dimensinal

$$
\begin{aligned}
& \mathfrak{R}^{2}=\{(x, y) \mid x, y \in \mathfrak{R}\} \\
& \mathfrak{R}^{3}=\{(x, y, z) \mid x, y, z \in \mathfrak{R}\}
\end{aligned}
$$

- 3-dimensinal

Standard basis for a vector space

$$
\begin{aligned}
& \mathbf{e}_{0}=(1,0, \ldots, 0) \\
& \mathbf{e}_{1}=(0,1, \ldots, 0) \\
& \ldots \\
& \mathbf{e}_{\mathbf{n - 1}}=(0,0, \ldots, 1)
\end{aligned}
$$

Main property of basis β is that for every vector \mathbf{v} in V there is a unique linear combination of the vectors in β that equal \mathbf{v}.

$$
\begin{aligned}
& \mathbf{v}=a_{0} \mathbf{b}_{0}+a_{1} \mathbf{b}_{1}+\ldots+a_{n-1} \mathbf{b}_{n-1} \\
& \text { or for } 3 \mathrm{D} \text { vector space } \\
& \mathbf{v}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}
\end{aligned}
$$

We can think of x, y and z as the amounts we move in the \mathbf{I}, \mathbf{j} and \mathbf{k} directions.

Inner product

- Set of functions <v,w> returning a real scalar with following properties:

$$
\begin{aligned}
& <\mathbf{v}, \mathbf{w}>=<\mathbf{w}, \mathbf{v}> \\
& <\mathbf{u}+\mathbf{v}, \mathbf{w}>=<\mathbf{u}, \mathbf{w}>+<\mathbf{v}, \mathbf{w}> \\
& \mathbf{a}<\mathbf{v}, \mathbf{w}>=<\mathrm{av}, \mathbf{w}> \\
& <\mathbf{v}, \mathbf{v} \gg=0 \\
& <\mathbf{v}, \mathbf{v}>=0 \text { iff } \mathbf{v}=0
\end{aligned}
$$

Dot product

$\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}| || | \mathbf{w}\| \cos \theta$

$$
\mathbf{v} \cdot \mathbf{w}=u_{x} w_{x}+u_{y} w_{y}+u_{z} w_{z}
$$

If $\mathbf{v} \cdot \mathbf{w}=0$ then vectors \mathbf{v} and \mathbf{w} are orthogonal

Cross product

- Aim is determination new vector orthogonal to both determined vectors
- Also it is known as vector product

$$
\|\mathbf{v} \times \mathbf{w}\|=\|\mathbf{v}\|\|\mathbf{w}\| \sin \theta
$$

and $\mathbf{v} \times \mathbf{w}=-(\mathbf{w} \times \mathbf{v})$
$\mathbf{v} \times \mathbf{w}=\left(v_{y} w_{z}-w_{y} v_{z}, y_{z} w_{x}-w_{z} v_{x}, v_{x} w_{y}-w_{x} v_{y}\right)$

Triple products

- Vector triple product

$$
\mathbf{u} \times(\mathbf{v} \times \mathbf{w})
$$

- Scalar triple product

$$
u \cdot(v \times w)
$$

- If $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})>0$ then the shortest rotation from v to w is in counterclockwise direction, otherwise - in clockwise direction

Affine space

- An affine space consists of a set of points W and a vector space V
- Relation between the points and vectors:
- For every pair of points P and Q in W exist a unique vector v in V such that

$$
v=Q-P
$$

- For every point P in W and every vector \mathbf{v} in V exist a unique point Q such that

$$
Q=P+v
$$

Representation of any point in W is $\mathrm{P}=\mathrm{O}+\mathrm{v}$, where
O is fixed point in W named as origin
Combination of the origin O and basis vectors is known as a coordinate frame
If we work with standard origin $(0,0, . ., 0)$ a standard basis then we work with Cartesian frame

Polar and spherical coordinates

- Relation between polar and Cartesian coordinates

$$
\begin{aligned}
& x=r \cos \theta, \\
& y=r \sin \theta
\end{aligned}
$$

- Relation between spherical and Cartesian coordinates

$$
\begin{aligned}
& X=\rho \sin \varphi \cos \theta, \\
& Y=\rho \sin \varphi \sin \theta, \\
& Z=\rho \cos \varphi,
\end{aligned}
$$

where φ is angle between z-axis and projection of \mathbf{v} on $y z$ plane, θ is angle between x-axis and projection of \mathbf{v} on $x y$ plane

Triangle

- Determined by 3 vectors

$$
\begin{aligned}
& \mathbf{v}_{0}=P_{1}-P_{2} \\
& \mathbf{v}_{1}=P_{2}-P_{1} \\
& \mathbf{v}_{3}=P_{0}-P_{2}
\end{aligned}
$$

Linear transformations

- Only operations possible in linear transformations are multiplication by a constant and addition
- Linear transformation T is a mapping between two vector spaces V and W , where for all \mathbf{v} in V and all scalars a:
$-T\left(\mathbf{v}_{0}+\mathbf{v}_{1}\right)=T\left(\mathbf{v}_{0}\right)+T\left(\mathbf{v}_{1}\right)$ for all $\mathbf{v}_{0}, \mathbf{v}_{1}$ in V ,
$-T(a v)=a T(v)$ for all \mathbf{v} in V

Matrices

- It is 2-dimensional array of value ($\mathrm{n} \times \mathrm{m}$)
- Elements, rows and columns
- Diagonal and trace
- Square, zero, diagonal and triangular matrix

Simple operations

- Addition

$$
\begin{aligned}
& \mathbf{S}=\mathbf{A}+\mathbf{B} \\
& s_{i, j}=a_{i, j}+b_{i, j}
\end{aligned}
$$

- Scalar multiplication

$$
\mathbf{P}=s \mathbf{A}
$$

- Transpose
$\mathbf{A}^{\top} \quad\left[\begin{array}{l}2,-1 \\ 0,2 \\ 6,3\end{array}\right]=\left[\begin{array}{l}2,0,6 \\ -1,2,3\end{array}\right]$

Matrices (cont.)

- Vector may be represented by matrix with one column (or row)
- Block matrix or matrix

$$
\begin{aligned}
& {\left[\begin{array}{l}
2,3,0 \\
-3,2,0 \\
0,0,1
\end{array}\right] \text { may be presente }} \\
& {\left[\begin{array}{l}
\mathbf{A}, 0 \\
\mathbf{o}^{\mathrm{T}}, 1
\end{array}\right] \text { where } \mathrm{A}=\left[\begin{array}{l}
2,3 \\
-3,2
\end{array}\right]}
\end{aligned}
$$ with submatrices

Matrix product

$$
\begin{aligned}
\mathrm{C} & =\mathrm{AB} \\
c_{i, j} & =\sum_{k=0}^{n-1} a_{i, k} b_{k, j}
\end{aligned}
$$

It is used for representation of linear transformation of vector

$$
B=A x,
$$

where x is n -dimensional vector and b is m dimensional vector (result of transformation)

Affine transformations

- For points P and constants a in affine space A
$T\left(a_{0} P_{0}+\ldots+a_{n-1} P_{n-1}\right)=a_{0} T\left(P_{0}\right)+\ldots+a_{n-1} T P_{n-1}$
where $a_{0}+\ldots+a_{n-1}=1$

Affine transformations provide remain of collinearity and coplanarity during transformations

Affine transformations (cont.)

- Translation
$-\mathrm{T}(\mathrm{P})=\mathrm{P}+\mathrm{t}$
- Simulation of moving of object in space, size and shape of object are not changed
- Matrix for translation of vector
$\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]$
$\left[\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right]$
$\left[\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right]$
$[x$$x$

Affine transformations (cont.)

Rotation

- Around x-axis

$$
\begin{aligned}
& y^{\prime}=y \cos \theta-z \sin \theta \\
& z^{\prime}=y \cos \theta+z \cos \theta
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{R}_{\mathrm{x}}=\left[\begin{array}{l}
1,0,0 \\
0, \cos \theta,-\sin \theta \\
0, \sin \theta, \cos \theta
\end{array}\right] \\
& \mathbf{R}_{y}=\left[\begin{array}{l}
\cos \theta, 0, \sin \theta \\
0,1,0 \\
-\sin \theta, 0, \cos \theta
\end{array}\right] \\
& \mathbf{R}_{z}=\left[\begin{array}{l}
\cos \theta,-\sin \theta, 0 \\
\sin \theta, \cos \theta, 0 \\
0,0,1
\end{array}\right]
\end{aligned}
$$

- Around y-axis

$$
X^{\prime}=z \sin \theta-x \cos \theta
$$

$$
Z^{\prime}=z \cos \theta-x \sin \theta
$$

- Around z -axis

$$
\begin{aligned}
& X^{\prime}=x \cos \theta-y \sin \theta \\
& Y^{\prime}=x \sin \theta+y \cos \theta
\end{aligned}
$$

Affine transformations (cont.)

Rotation

$$
\mathbf{R}_{\mathbf{x}} \mathbf{R}_{\mathbf{y}} \mathbf{R}_{\mathbf{z}}=\left[\begin{array}{l}
C y C z,-C y S z, S y \\
S x S y C z+C x S z,-S x S y S z+C x C z,-S x C y \\
-C x S y C z+S x S z, C x S y S z+S x C z, C x C y
\end{array}\right]
$$

Where
$\operatorname{Sx}=\operatorname{Sin} \theta_{x}$ and so on

Affine transformations (cont.)

Scaling

- C_{s} - center of scaling
- Let $\mathrm{C}_{\mathrm{s}}=0$ and $\mathbf{y}=0$
- Then matrix is
- If $a=b=c$ then it is uniform scaling

$$
\mathbf{S}_{\mathrm{abc}}=\left[\begin{array}{l}
a, 0,0,0 \\
0, b, 0,0 \\
0,0, c, 0 \\
0,0,0,1
\end{array}\right]
$$

Affine transformations (cont.)

- Reflection
- Shear
- Shear by x-axis

$$
\mathbf{H}_{\mathbf{x}}=\left[\begin{array}{l}
1,0,0 \\
a, 1,0 \\
b, 0,1
\end{array}\right]
$$

Combination of transformations

- $\mathrm{V}_{\text {new }}=\mathrm{V}_{\text {old }} \times\left(\mathrm{M}_{1} \times \mathrm{M}_{2} \times \ldots\right)$
- Lot of transformations in games
- So it is necessary hardware support
- graphics processors

