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Introduction to
Computer Vision Lecture OutlineLecture Outline
Calibration: Find the intrinsic and extrinsic parameters

Problem and assumptions
Direct parameter estimation approach
Projection matrix approach

Direct Parameter Estimation Approach
Basic equations (from Lecture 5)
Estimating the Image center using vanishing points
SVD (Singular Value Decomposition) and Homogeneous System
Focal length, Aspect ratio, and extrinsic parameters
Discussion: Why not do all the parameters together?

Projection Matrix Approach (…after-class reading)
Estimating the projection matrix M
Computing the camera parameters from M
Discussion

Comparison and Summary
Any difference?



Introduction to
Computer Vision Problem and AssumptionsProblem and Assumptions

Given one or more images of a calibration pattern, 
Estimate

The intrinsic parameters
The extrinsic parameters, or
BOTH

Issues:  Accuracy of Calibration
How to design and measure the calibration pattern

Distribution of the control points to assure stability of 
solution – not coplanar
Construction tolerance one or two order of magnitude 
smaller than the desired accuracy of calibration 
e.g. 0.01 mm tolerance  versus 0.1mm desired accuracy

How to extract the image correspondences
Corner detection?
Line fitting?

Algorithms for camera calibration given both 3D-2D 
pairs

Alternative approach: 3D from un-calibrated camera



Introduction to
Computer Vision Camera ModelCamera Model

Coordinate Systems
Frame coordinates (xim, yim) pixels
Image coordinates (x,y)  in mm
Camera coordinates (X,Y,Z) 
World coordinates (Xw,Yw,Zw) 

Camera Parameters
Intrinsic Parameters (of the camera and the frame grabber): link the 
frame coordinates of an image point with its corresponding 
camera coordinates
Extrinsic parameters: define the location and orientation of the
camera coordinate system with respect to the world coordinate 
system
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Introduction to
Computer VisionLinear Version of Perspective ProjectionLinear Version of Perspective Projection

World to Camera
Camera: P = (X,Y,Z)T

World: Pw = (Xw,Yw,Zw)T

Transform: R, T 

Camera to Image
Camera: P = (X,Y,Z)T

Image: p = (x,y)T

Not linear equations

Image to Frame
Neglecting distortion
Frame (xim, yim)T

World to Frame
(Xw,Yw,Zw)T -> (xim, yim)T

Effective focal lengths
fx = f/sx, fy=f/sy
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Introduction to
Computer Vision Direct Parameter MethodDirect Parameter Method

Extrinsic Parameters
R, 3x3 rotation matrix

Three angles α,β,γ
T, 3-D translation vector

Intrinsic Parameters
fx, fy :effective focal length in pixel

α = fx/fy = sy/sx, and fx
(ox, oy): known Image center -> (x,y) known
k1, radial distortion coefficient: neglect it in the basic algorithm

Same Denominator in the two Equations
Known : (Xw,Yw,Zw) and its (x,y)
Unknown: rpq, Tx, Ty, fx, fy
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Introduction to
Computer Vision Linear EquationsLinear Equations

Linear Equation of 8 unknowns v = (v1,…,v8)

Aspect ratio: α = fx/fy
Point pairs , {(Xi, Yi,, Zi) <-> (xi, yi) } drop the ‘ and subscript “w”
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Introduction to
Computer Vision Homogeneous SystemHomogeneous System

Homogeneous System of N Linear Equations 
Given N corresponding pairs  {(Xi, Yi,, Zi) <-> (xi, yi) }, i=1,2,…N
8 unknowns v = (v1,…,v8)T,  7 independent parameters
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The system has a nontrivial solution (up to a scale) 
IF N >= 7 and N points are not coplanar  => Rank (A) = 7
Can be determined from the SVD of A



Introduction to
Computer Vision SVD: definitionSVD: definition

Singular Value Decomposition:
Any mxn matrix can be written as the product of three 
matrices

TUDVA =

Singular values σi are fully determined by A
D is diagonal:  dij =0 if i≠j; dii = σi (i=1,2,…,n)

σ1 ≥ σ2 ≥ …≥ σN ≥ 0

Both U and V are not unique
Columns of each are mutual orthogonal vectors
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Introduction to
Computer Vision SVD: propertiesSVD: properties

1. Singularity and Condition Number
nxn A is nonsingular IFF all singular values are nonzero
Condition number : degree of singularity of A  

A is ill-conditioned if 1/C is comparable to the arithmetic 
precision of your machine; almost singular

2. Rank of a square matrix A
Rank (A) = number of nonzero singular values

3. Inverse of a square Matrix
If A is nonsingular
In general, the pseudo-inverse of A

4. Eigenvalues and Eigenvectors (questions)
Eigenvalues of  both ATA and AAT are σi

2 (σi > 0)
The columns of U are the eigenvectors of AAT  (mxm)
The columns of V are the eigenvectors of ATA (nxn)
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Introduction to
Computer Vision SVD: Application 1SVD: Application 1

Least Square
Solve a system of m equations for n unknowns x(m >= n)
A is a mxn matrix of the coefficients 
b (≠0) is the m-D vector of the data 
Solution: 

How to solve: compute the pseudo-inverse of ATA by SVD
(ATA)+ is more likely to coincide with (ATA)-1 given m > n
Always a good idea to look at the condition number of ATA

bAx =

bAAxA TT = bAAAx TT += )(

nxn matrix Pseudo-inverse



Introduction to
Computer Vision SVD: Application 2SVD: Application 2

Homogeneous System
m equations for n unknowns x(m >= n-1)
Rank (A) = n-1 (by looking at the SVD of A)
A non-trivial solution (up to a arbitrary scale) by SVD:
Simply proportional to the eigenvector corresponding to the  
only zero eigenvalue of ATA  (nxn matrix)

Note:
All the other eigenvalues are positive because       
Rank (A)=n-1
For a proof, see Textbook p. 324-325
In practice, the eigenvector (i.e. vn) corresponding to 
the minimum eigenvalue of ATA, i.e. σn

2

0Ax =



Introduction to
Computer Vision SVD: Application 3SVD: Application 3

Problem Statements
Numerical estimate of a matrix A whose entries are not 
independent
Errors introduced by noise alter the estimate to Â

Enforcing Constraints by SVD
Take orthogonal matrix A as an example
Find the closest matrix to Â, which satisfies the constraints 
exactly

SVD of Â 
Observation: D = I (all the singular values are 1) if A is 
orthogonal
Solution: changing the singular values to those expected

TUDVA =ˆ

TUIVA =



Introduction to
Computer Vision Homogeneous SystemHomogeneous System

Homogeneous System of N Linear Equations 
Given N corresponding pairs  {(Xi, Yi,, Zi) <-> (xi, yi) }, 
i=1,2,…N
8 unknowns v = (v1,…,v8)T,  7 independent parameters

The system has a nontrivial solution (up to a scale) 
IF N >= 7 and N points are not coplanar  => Rank (A) = 7
Can be determined from the SVD of A
Rows of VT: eigenvectors {ei} of ATA
Solution: the 8th row e8 corresponding to the only zero 
singular value λ8=0

Practical Consideration
The errors in localizing image and world points may make 
the rank of A to be maximum (8)
In this case select the eigenvector corresponding to the 
smallest eigenvalue.

0Av =

TUDVA =

8ev c=



Introduction to
Computer Vision Scale Factor and Aspect RatioScale Factor and Aspect Ratio

Equations for scale factor γ and aspect ratio α

Knowledge: R is an orthogonal matrix 

Second row (i=j=2):

First row (i=j=1)
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Introduction to
Computer Vision Rotation R and Translation TRotation R and Translation T

Equations for first 2 rows of R and T given α and |γ|

First 2 rows of R and T can be found up to a common sign s (+ or -)

The third row of the rotation matrix by vector product

Remaining Questions :
How to find the sign s?
Is R orthogonal?
How to find Tz and fx, fy?
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Introduction to
Computer Vision Find the sign sFind the sign s

Facts:
fx > 0
Zc >0
x known
Xw,Yw,Zw known

Solution
⇒ Check the sign of Xc  
⇒ Should be opposite 
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Introduction to
Computer Vision Rotation R : OrthogonalityRotation R : Orthogonality

Question: 
First 2 rows of R are calculated 
without using the mutual 
orthogonal constraint

Solution: 
Use SVD of estimate R
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Introduction to
Computer Vision Find Tz, Fx and FyFind Tz, Fx and Fy

Solution
Solve the system of N linear 
equations with two unknown

Tx, fx

Least Square method

SVD method to find inverse 
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Introduction to
Computer VisionDirect parameter Calibration SummaryDirect parameter Calibration Summary

Algorithm (p130-131)
1. Measure N 3D coordinates (Xi, Yi,Zi)
2. Locate their corresponding image 

points (xi,yi)  - Edge, Corner, Hough
3. Build matrix A  of a homogeneous 

system  Av = 0 
4. Compute SVD of A , solution v
5. Determine aspect ratio α and scale |γ|
6. Recover the first two rows of R and the 

first two components of T up to a sign
7. Determine sign s of γ by checking the 

projection equation
8. Compute the 3rd row of R by vector 

product, and enforce orthogonality
constraint by SVD

9. Solve Tz and fx using Least Square 
and SVD, then fy = fx / α
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Introduction to
Computer Vision DiscussionsDiscussions

Questions

Can we select an arbitrary image center for solving other parameters?

How to find the image center  (ox,oy)?

How about to include the radial distortion?

Why not solve all the parameters once ? 

How many unknown with ox, oy?  --- 20 ??? – projection matrix method
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Introduction to
Computer Vision Estimating the Image CenterEstimating the Image Center

Vanishing points:
Due to perspective, all parallel lines in 3D space appear to meet in 
a point on the image - the vanishing point, which is the common 
intersection of all the image lines



Introduction to
Computer Vision Estimating the Image CenterEstimating the Image Center

Vanishing points:
Due to perspective, all parallel lines in 3D space appear to meet in 
a point on the image - the vanishing point, which is the common 
intersection of all the image lines

VP1



Introduction to
Computer Vision Estimating the Image CenterEstimating the Image Center

Vanishing points:
Due to perspective, all parallel lines in 3D space appear to meet in a point 
on the image - the vanishing point, which is the common intersection of all 
the image lines

Important property:

Vector OV (from the center of projection to the 
vanishing point) is parallel to the parallel lines

O

VP1

Y

X

Z



Introduction to
Computer Vision Estimating the Image CenterEstimating the Image Center

Vanishing points:
Due to perspective, all parallel lines in 3D space appear to meet in 
a point on the image - the vanishing point, which is the common 
intersection of all the image lines

VP1

VP2



Introduction to
Computer Vision Estimating the Image CenterEstimating the Image Center

Orthocenter Theorem:
Input: three mutually 
orthogonal sets of 
parallel lines in an image
T: a triangle on the image 
plane defined by the 
three vanishing points
Image center = 
orthocenter of triangle T
Orthocenter of a triangle 
is the common 
intersection of the three 
altitudes VP1

VP2

VP3



Introduction to
Computer Vision Estimating the Image CenterEstimating the Image Center

Orthocenter Theorem:
Input: three mutually 
orthogonal sets of 
parallel lines in an image
T: a triangle on the image 
plane defined by the 
three vanishing points
Image center = 
orthocenter of triangle T
Orthocenter of a triangle 
is the common 
intersection of the three 
altitudes

VP1

VP2

VP3



Introduction to
Computer Vision Estimating the Image CenterEstimating the Image Center

Orthocenter Theorem:
Input: three mutually 
orthogonal sets of 
parallel lines in an image
T: a triangle on the image 
plane defined by the 
three vanishing points
Image center = 
orthocenter of triangle T
Orthocenter of a triangle 
is the common 
intersection of the three 
altitudes

Orthocenter Theorem:
WHY?

VP1

VP2

VP3
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h1

h1

(ox,oy)



Introduction to
Computer Vision Estimating the Image CenterEstimating the Image Center

Assumptions:
Known aspect ratio
Without lens distortions

Questions:
Can we solve both 
aspect ratio and the 
image center?
How about with lens 
distortions?

VP1

VP2
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Introduction to
Computer VisionDirect parameter Calibration SummaryDirect parameter Calibration Summary
Algorithm (p130-131)
0.   Estimate image center (and aspect ratio)
1. Measure N 3D coordinates (Xi, Yi,Zi)
2. Locate their corresponding image (xi,yi)  -

Edge, Corner, Hough
3. Build matrix A  of a homogeneous system  

Av = 0 
4. Compute SVD of A , solution v
5. Determine aspect ratio α and scale |γ|
6. Recover the first two rows of R and the first 

two components of T up to a sign
7. Determine sign s of γ by checking the 

projection equation
8. Compute the 3rd row of R by vector product, 

and enforce orthogonality constraint by 
SVD

9. Solve Tz and fx using Least Square and 
SVD , then fy = fx / α
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Introduction to
Computer VisionRemaining Issues and Possible SolutionRemaining Issues and Possible Solution

Original assumptions:
Without lens distortions
Known aspect ratio when estimating image center
Known image center when estimating others including aspect ratio

New Assumptions
Without lens distortion 
Aspect ratio is approximately 1, or α = fx/fy = 4:3 ; image center about 
(M/2, N/2) given a MxN image

Solution (?)
1. Using α = 1 to find image center (ox, oy)
2. Using the estimated center to find others including α
3. Refine image center using new α ; if change still significant, go to step 

2; otherwise stop

Projection Matrix Approach



Introduction to
Computer Vision Linear Matrix Equation of 

perspective projection
Linear Matrix Equation of 

perspective projection
Projective Space

Add fourth coordinate 
Pw = (Xw,Yw,Zw, 1)T

Define (u,v,w)T such that
u/w =xim, v/w =yim

3x4 Matrix Eext

Only extrinsic parameters
World to camera

3x3 Matrix Eint

Only intrinsic parameters
Camera to frame

Simple Matrix Product!  Projective Matrix M= MintMext

(Xw,Yw,Zw)T -> (xim, yim)T

Linear Transform from projective space to projective plane
M defined up to a scale factor – 11 independent entries
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Introduction to
Computer Vision Projection Matrix  MProjection Matrix  M

World – Frame Transform
Drop “im” and “w”
N pairs (xi,yi) <-> (Xi,Yi,Zi)
Linear equations of m 

3x4 Projection Matrix M
Both intrinsic (4) and extrinsic (6) – 10 parameters
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Introduction to
Computer VisionStep 1:  Estimation of projection matrixStep 1:  Estimation of projection matrix

World – Frame Transform
Drop “im” and “w”
N pairs (xi,yi) <-> (Xi,Yi,Zi)

Linear equations of m 
2N equations, 11 independent variables
N >=6 , SVD => m up to a unknown scale
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Introduction to
Computer VisionStep 2: Computing camera parametersStep 2: Computing camera parameters

3x4 Projection Matrix M
Both intrinsic and extrinsic

From M^ to parameters (p134-135)
Find scale |γ| by using unit vector R3

T

Determine Tz and sign of γ from m34 (i.e. q43)
Obtain R3

T

Find (Ox, Oy) by dot products of Rows q1. q3, q2.q3, using the 
orthogonal constraints of R
Determine fx and fy from q1 and q2 (Eq. 6.19) Wrong???)
All the remainings: R1

T, R2
T, Tx, Ty 

Enforce orthognoality on R?
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Introduction to
Computer Vision ComparisonsComparisons

Direct parameter method and Projection Matrix method

Properties in Common:
Linear system first, Parameter decomposition 
second
Results should be exactly the same

Differences
Number of variables in homogeneous systems

Matrix method: All parameters at once, 2N Equations of 12 
variables
Direct method in three steps: N Equations of 8 variables, N 
equations of 2 Variables, Image Center – maybe more stable

Assumptions
Matrix method: simpler, and more general; sometime projection 
matrix is sufficient so no need for parameter decompostion
Direct method: Assume known image center in the first two steps,
and known aspect ratio in estimating image center



Introduction to
Computer Vision Guidelines for CalibrationGuidelines for Calibration

Pick up a well-known technique or a few
Design and construct calibration patterns (with known 3D)
Make sure what parameters you want to find for your camera
Run algorithms on ideal simulated data

You can either use the data of the real calibration pattern or using computer 
generated data
Define a virtual camera with known intrinsic and extrinsic parameters
Generate 2D points from the 3D data using the virtual camera
Run algorithms on the 2D-3D data set

Add noises in the simulated data to test the robustness 
Run algorithms on the real data (images of calibration target)
If successful, you are all set 
Otherwise:

Check how you select the distribution of control points
Check the accuracy in 3D and 2D localization
Check the robustness of your algorithms again
Develop your own algorithms NEW METHODS?



Introduction to
Computer Vision NextNext

3D reconstruction using two cameras

Stereo Vision

Homework  #3  online, Due April 13 before midnight


