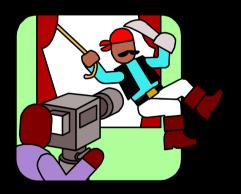
# CSC *16716* Spring 2004



# Topic 6 of Part 2 Calibration

Zhigang Zhu, NAC 8/203A

http://www-cs.engr.ccny.cuny.edu/~zhu/VisionCourse-2004.html

#### **Computer Vision**

#### **Lecture Outline**

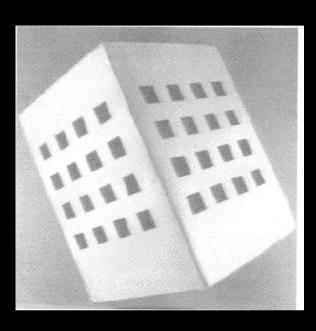
- Calibration: Find the intrinsic and extrinsic parameters
  - Problem and assumptions
  - Direct parameter estimation approach
  - Projection matrix approach
- Direct Parameter Estimation Approach
  - Basic equations (from Lecture 5)
  - Estimating the Image center using vanishing points
  - SVD (Singular Value Decomposition) and Homogeneous System
  - Focal length, Aspect ratio, and extrinsic parameters
  - Discussion: Why not do all the parameters together?
- Projection Matrix Approach (...after-class reading)
  - Estimating the projection matrix M
  - Computing the camera parameters from M
  - Discussion
- Comparison and Summary
  - Any difference?

#### Introduction to

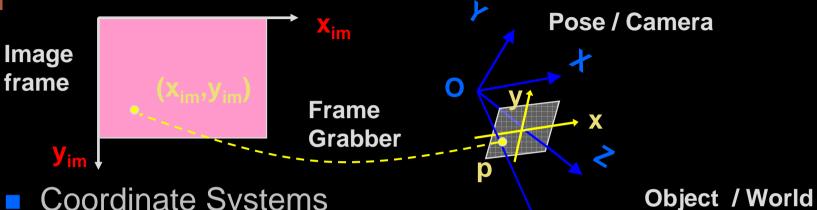
#### **Computer Vision**

## **Problem and Assumptions**

- Given one or more images of a calibration pattern,
- Estimate
  - The intrinsic parameters
  - The extrinsic parameters, or
  - BOTH
- Issues: Accuracy of Calibration
  - How to design and measure the calibration pattern
    - Distribution of the control points to assure stability of solution – not coplanar
    - Construction tolerance one or two order of magnitude smaller than the desired accuracy of calibration
    - e.g. 0.01 mm tolerance versus 0.1mm desired accuracy
  - How to extract the image correspondences
    - Corner detection?
    - Line fitting?
  - Algorithms for camera calibration given both 3D-2D pairs
- Alternative approach: 3D from un-calibrated camera



## Camera Model



- Coordinate Systems
  - Frame coordinates (x<sub>im</sub>, y<sub>im</sub>) pixels
  - Image coordinates (x,y) in mm
  - Camera coordinates (X,Y,Z)
  - World coordinates  $(X_w, Y_w, Z_w)$

#### Camera Parameters

- Intrinsic Parameters (of the camera and the frame grabber): link the frame coordinates of an image point with its corresponding camera coordinates
- Extrinsic parameters: define the location and orientation of the camera coordinate system with respect to the world coordinate system

#### Introduction to

## computLinear Version of Perspective Projection

#### World to Camera

- Camera:  $P = (X,Y,Z)^T$
- World: Pw = (Xw,Yw,Zw)
- Transform: R, T

#### Camera to Image

- Camera:  $P = (X,Y,Z)^T$
- Image:  $p = (x,y)^T$
- Not linear equations

#### Image to Frame

- Neglecting distortion
- Frame (xim, yim)<sup>T</sup>

#### World to Frame

- Effective focal lengths

$$\mathbf{P} = \mathbf{RP_w} + \mathbf{T} = \begin{pmatrix} r_{11}X_w + r_{12}Y_w + r_{13}Z_w + T_x \\ r_{21}X_w + r_{22}Y_w + r_{23}Z_w + T_y \\ r_{31}X_w + r_{32}Y_w + r_{33}Z_w + T_z \end{pmatrix} = \begin{bmatrix} \mathbf{R}_1^T \mathbf{P_w} + T_x \\ \mathbf{R}_2^T \mathbf{P_w} + T_y \\ \mathbf{R}_3^T \mathbf{P_w} + T_z \end{bmatrix}$$

$$(x, y) = (f \frac{X}{Z}, f \frac{Y}{Z})$$

$$x = -(x_{im} - o_x)s_x$$
$$y = -(y_{im} - o_y)s_y$$

**Vorid to Frame**
• 
$$(Xw,Yw,Zw)^T$$
 ->  $(xim, yim)^T$ 
•  $(xw,Yw,Zw)^T$  ->  $(xim, yim)^T$ 
• Effective focal lengths
•  $f_x = f/s_x$ ,  $f_y = f/s_y$ 

$$y_{im} - o_y = -f_y \frac{r_{11}X_w + r_{12}Y_w + r_{13}Z_w + T_x}{r_{31}X_w + r_{32}Y_w + r_{23}Z_w + T_y}$$
•  $f_x = f/s_x$ ,  $f_y = f/s_y$ 

### Computer Visio

## **Direct Parameter Method**

- Extrinsic Parameters
  - R, 3x3 rotation matrix
    - Three angles α,β,γ
  - T, 3-D translation vector

$$x' = x_{im} - o_x = -f_x \frac{r_{11}X_w + r_{12}Y_w + r_{13}Z_w + T_x}{r_{31}X_w + r_{32}Y_w + r_{33}Z_w + T_z}$$

$$y' = y_{im} - o_y = -f_y \frac{r_{21}X_w + r_{22}Y_w + r_{23}Z_w + T_y}{r_{31}X_w + r_{32}Y_w + r_{33}Z_w + T_z}$$

- Intrinsic Parameters
  - fx, fy :effective focal length in pixel
    - $\alpha = fx/fy = sy/sx$ , and fx
  - (ox, oy): known Image center -> (x,y) known
  - k<sub>1</sub>, radial distortion coefficient: neglect it in the basic algorithm
- Same Denominator in the two Equations
  - Known: (Xw,Yw,Zw) and its (x,y)
  - Unknown: rpq, Tx, Ty, fx, fy

$$f_y(r_{21}X_w + r_{22}Y_w + r_{23}Z_w + T_y)/y' = f_x(r_{11}X_w + r_{12}Y_w + r_{13}Z_w + T_x)/x'$$



$$x' f_y (r_{21} X_w + r_{22} Y_w + r_{23} Z_w + T_y) = y' f_x (r_{11} X_w + r_{12} Y_w + r_{13} Z_w + T_x)$$



# **Linear Equations**

- Linear Equation of 8 unknowns v = (v1,...,v8)
  - Aspect ratio:  $\alpha = fx/fy$
  - Point pairs , {(Xi, Yi,, Zi) <-> (xi, yi) } drop the 'and subscript "w"

$$x'(r_{21}X_w + r_{22}Y_w + r_{23}Z_w + T_y) = y'\alpha(r_{11}X_w + r_{12}Y_w + r_{13}Z_w + T_x)$$



$$|x_i X_i r_{21} + x_i Y_i r_{22} + x_i Z_i r_{23} + x_i T_y - y_i X_i (\alpha r_{11}) - y_i Y_i (\alpha r_{12}) - y_i Z_i (\alpha r_{13}) - y_i (\alpha T_x) = 0$$



$$|x_i X_i v_1 + x_i Y_i v_2 + x_i Z_i v_3 + x_i v_4 - y_i X_i v_5 - y_i Y_i v_6 - y_i Z_i v_7 - y_i v_8 = 0|$$

$$(v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8)$$

$$= (r_{21}, r_{22}, r_{23}, T_y, \alpha r_{11}, \alpha r_{12}, \alpha r_{13}, \alpha T_x)$$



# **Homogeneous System**

- Homogeneous System of N Linear Equations
  - Given N corresponding pairs {(Xi, Yi,, Zi) <-> (xi, yi) }, i=1,2,...N
  - 8 unknowns  $\mathbf{v} = (v1,...,v8)^T$ , 7 independent parameters

$$x_i X_i v_1 + x_i Y_i v_2 + x_i Z_i v_3 + x_i v_4 - y_i X_i v_5 - y_i Y_i v_6 - y_i Z_i v_7 - y_i v_8 = 0$$



$$\mathbf{A}\mathbf{v} = \mathbf{0}$$

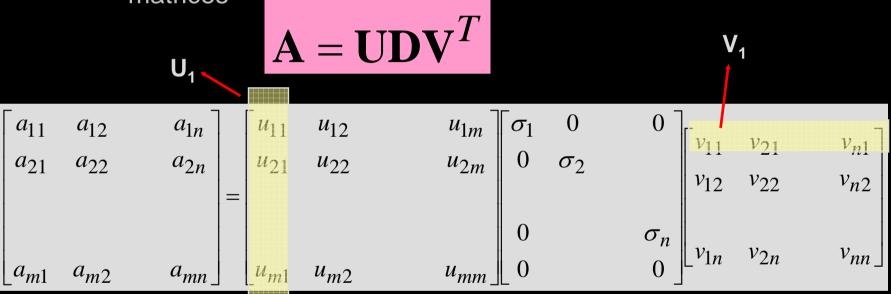
$$\mathbf{A} = \begin{bmatrix} x_1 X_1 & x_1 Y_1 & x_1 Z_1 & x_1 & -y_1 X_1 & -y_1 Y_1 & -y_1 Z_1 & -y_1 \\ x_2 X_2 & x_2 Y_2 & x_2 Z_2 & x_2 & -y_2 X_2 & -y_2 Y_2 & -y_2 Z_2 & -y_2 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ x_N X_N & x_N Y_N & x_N Z_N & x_N & -y_N X_N & -y_N Y_N & -y_N Z_N & -y_N \end{bmatrix}$$

- The system has a nontrivial solution (up to a scale)
  - IF N >= 7 and N points are not coplanar => Rank (A) = 7
  - Can be determined from the SVD of A

## **SVD:** definition

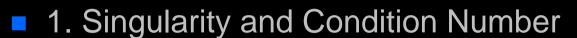
#### **Appendix A.6**

- Singular Value Decomposition:
  - Any mxn matrix can be written as the product of three matrices



- Singular values σi are fully determined by A
  - D is diagonal: dij =0 if  $i\neq j$ ; dii =  $\sigma$ i (i=1,2,...,n)
  - $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_N \geq 0$
- Both U and V are not unique
  - Columns of each are mutual orthogonal vectors

# **SVD:** properties





- nxn A is nonsingular IFF all singular values are nonzero
- Condition number : degree of singularity of A  $C = \sigma_1 / \sigma_n$ 
  - A is ill-conditioned if 1/C is comparable to the arithmetic precision of your machine; almost singular
- 2. Rank of a square matrix A
  - Rank (A) = number of nonzero singular values
- 3. Inverse of a square Matrix
  - If A is nonsingular  $A^{-1} = VD^{-1}U^{T}$
  - $\mathbf{A}^+ = \mathbf{V}\mathbf{D}_0^{-1}\mathbf{U}^T$ • In general, the pseudo-inverse of A
- 4. Eigenvalues and Eigenvectors (questions)
  - Eigenvalues of both A<sup>T</sup>A and AA<sup>T</sup> are  $\sigma_i^2$  ( $\sigma_i > 0$ )
  - The columns of U are the eigenvectors of  $AA^T$  (mxm)  $AA^Tu_i = \sigma_i^2 u_i$
  - The columns of V are the eigenvectors of A<sup>T</sup>A (nxn)

$$\mathbf{A}\mathbf{A}^T\mathbf{u}_i = \sigma_i^2 \mathbf{u}_i$$

$$\mathbf{A}^T \mathbf{A} \mathbf{v}_i = \sigma_i^2 \mathbf{v}_i$$

# **SVD: Application 1**





- Solve a system of m equations for n unknowns x(m >= n)
- A is a mxn matrix of the coefficients
- b (≠0) is the m-D vector of the data
- Solution:

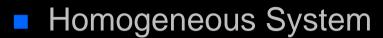
$$\mathbf{A}^{T}\mathbf{A}\mathbf{x} = \mathbf{A}^{T}\mathbf{b}$$

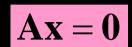
$$\mathbf{x} = (\mathbf{A}^{T}\mathbf{A})^{+}\mathbf{A}^{T}\mathbf{b}$$

$$\mathbf{x} = (\mathbf{A}^{T}\mathbf{A})^{+}\mathbf{A}^{T}\mathbf{b}$$
Pseudo-inverse

- How to solve: compute the pseudo-inverse of A<sup>T</sup>A by SVD
  - (A<sup>T</sup>A)+ is more likely to coincide with (A<sup>T</sup>A)-1 given m > n
  - Always a good idea to look at the condition number of A<sup>T</sup>A

# **SVD: Application 2**





- m equations for n unknowns  $x(m \ge n-1)$
- Rank (A) = n-1 (by looking at the SVD of A)
- A non-trivial solution (up to a arbitrary scale) by SVD:
- Simply proportional to the eigenvector corresponding to the only zero eigenvalue of A<sup>T</sup>A (nxn matrix)

#### Note:

- All the other eigenvalues are positive because Rank (A)=n-1
- For a proof, see Textbook p. 324-325
- In practice, the eigenvector (i.e.  $v_n$ ) corresponding to the minimum eigenvalue of A<sup>T</sup>A, i.e.  $\sigma_n^2$

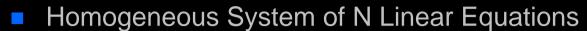
# **SVD: Application 3**

#### Problem Statements

- Numerical estimate of a matrix A whose entries are not independent
- Errors introduced by noise alter the estimate to Â
- Enforcing Constraints by SVD
  - Take orthogonal matrix A as an example
  - Find the closest matrix to Â, which satisfies the constraints exactly
    - SVD of  $\hat{\mathbf{A}} = \mathbf{U}\mathbf{D}\mathbf{V}^T$
    - Observation: D = I (all the singular values are 1) if A is orthogonal
    - Solution: changing the singular values to those expected

$$A = UIV^T$$

# Homogeneous System





- Given N corresponding pairs {(Xi, Yi,, Zi) <-> (xi, yi) },
   i=1,2,...N
- 8 unknowns  $\mathbf{v} = (v1,...,v8)^T$ , 7 independent parameters
- The system has a nontrivial solution (up to a scale)
  - IF N >= 7 and N points are not coplanar => Rank (A) = 7
  - Can be determined from the SVD of A
  - Rows of V<sup>T</sup>: eigenvectors {e<sub>i</sub>} of A<sup>T</sup>A



• Solution: the 8th row  $\mathbf{e}_8$  corresponding to the only zero singular value  $\lambda_8=0$   $\overline{\mathbf{v}}=c\mathbf{e}_8$ 

- The errors in localizing image and world points may make the rank of A to be maximum (8)
- In this case select the eigenvector corresponding to the smallest eigenvalue.

#### **Computer Vision**

# Scale Factor and Aspect Ratio

**Equations for scale factor**  $\gamma$  and aspect ratio  $\alpha$ 

$$\overline{\mathbf{v}} = \gamma (r_{21}, r_{22}, r_{23}, T_y, \alpha r_{11}, \alpha r_{12}, \alpha r_{13}, \alpha T_x)$$

$$\mathbf{v_1} \quad \mathbf{v_2} \quad \mathbf{v_3} \quad \mathbf{v_4} \quad \mathbf{v_5} \quad \mathbf{v_6} \quad \mathbf{v_7} \quad \mathbf{v_8}$$

Knowledge: R is an orthogonal matrix

$$\mathbf{R}_{i}^{T}\mathbf{R}_{j} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

$$\mathbf{R} = (r_{ij})_{3\times3} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} \mathbf{R}_1^T \\ \mathbf{R}_2^T \\ \mathbf{R}_3^T \end{bmatrix}$$

Second row (i=j=2):

$$r_{21}^2 + r_{22}^2 + r_{23}^2 = 1 \implies |\gamma| = \sqrt{\overline{v_1}^2 + \overline{v_2}^2 + \overline{v_3}^2}$$

■ First row (i=j=1)

$$r^{2} + r^{2} + r^{2} = 1 \implies \alpha \mid \gamma \mid = \sqrt{\overline{v}_{5}^{2} + \overline{v}_{6}^{2} + \overline{v}_{7}^{2}}$$

#### **Rotation R and Translation T**

Equations for first 2 rows of R and T given  $\alpha$  and  $|\gamma|$ 

$$\overline{\mathbf{v}} = s \mid \gamma \mid (r_{21}, r_{22}, r_{23}, T_y, \alpha r_{11}, \alpha r_{12}, \alpha r_{13}, \alpha T_x)$$

First 2 rows of R and T can be found up to a common sign s (+ or -)

$$s\mathbf{R}_1^T, s\mathbf{R}_2^T, sT_x, sT_y$$

The third row of the rotation matrix by vector product

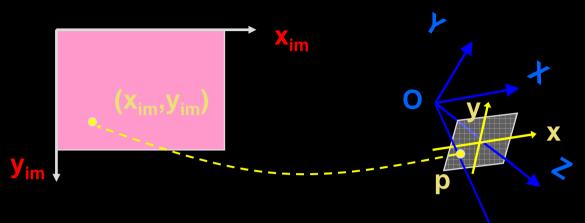
$$\mathbf{R}_3^T = \mathbf{R}_1^T \times \mathbf{R}_2^T = s\mathbf{R}_1^T \times s\mathbf{R}_2^T$$

- Remaining Questions :
  - How to find the sign s?
  - Is R orthogonal?
  - How to find Tz and fx, fy?

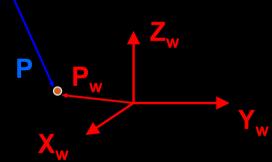
$$\mathbf{R} = (r_{ij})_{3\times3} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} \mathbf{R}_1^T \\ \mathbf{R}_2^T \\ \mathbf{R}_3^T \end{bmatrix}$$

#### **Computer Vision**

## Find the sign s



- Facts:
  - fx > 0
  - Zc >0
  - x known
  - Xw,Yw,Zw known
- Solution
  - $\Rightarrow$  Check the sign of Xc
  - ⇒ Should be opposite to x



$$x = -f_x \frac{Xc}{Zc} = -f_x \frac{r_{11}X_w + r_{12}Y_w + r_{13}Z_w + T_x}{r_{31}X_w + r_{32}Y_w + r_{33}Z_w + T_z}$$

$$y = -f_y \frac{Yc}{Zc} = -f_y \frac{r_{21}X_w + r_{22}Y_w + r_{23}Z_w + T_y}{r_{31}X_w + r_{32}Y_w + r_{33}Z_w + T_z}$$



## **Rotation R: Orthogonality**

- Question:
  - First 2 rows of R are calculated without using the mutual orthogonal constraint

$$\hat{\mathbf{R}}^T \hat{\mathbf{R}} = \mathbf{I}?$$

$$\mathbf{R} = (r_{ij})_{3\times3} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} \mathbf{R}_1^T \\ \mathbf{R}_2^T \\ \mathbf{R}_3^T \end{bmatrix}$$

$$\mathbf{R}_3^T = \mathbf{R}_1^T \times \mathbf{R}_2^T = s\mathbf{R}_1^T \times s\mathbf{R}_2^T$$

- Solution:
  - Use SVD of estimate R

$$\hat{\mathbf{R}} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathbf{T}}$$

$$\mathbf{R} = \mathbf{U}\mathbf{I}\mathbf{V}^{\mathbf{T}}$$

Replace the diagonal matrix D with the 3x3 identity matrix

## Find Tz, Fx and Fy

- Solution
  - Solve the system of N linear equations with two unknown
    - Tx, fx

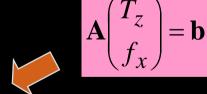
$$x = -f_x \frac{r_{11}X_w + r_{12}Y_w + r_{13}Z_w + T_x}{r_{31}X_w + r_{32}Y_w + r_{33}Z_w + T_z}$$



$$a_{i1} = -x(r_{11}X_w + r_{12}Y_w + r_{13}Z_w + T_x)f_x = -x(r_{31}X_w + r_{32}Y_w + r_{33}Z_w)$$

Least Square method

$$\begin{pmatrix} \hat{T}_z \\ \hat{f}_x \end{pmatrix} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$$

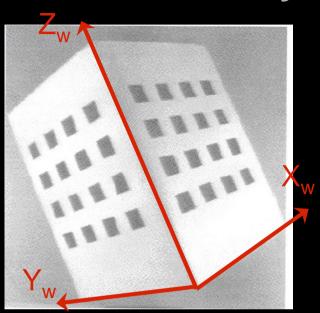


• SVD method to find inverse

#### **Introduction to**

## Computer ViDirect parameter Calibration Summary

- Algorithm (p130-131)
  - 1. Measure N 3D coordinates (Xi, Yi,Zi)
  - Locate their corresponding image points (xi,yi) - Edge, Corner, Hough
  - 3. Build matrix A of a homogeneous system Av = 0
  - 4. Compute SVD of A , solution v
  - 5. Determine aspect ratio  $\alpha$  and scale  $|\gamma|$
  - 6. Recover the first two rows of R and the first two components of T up to a sign
  - 7. Determine sign s of  $\gamma$  by checking the projection equation
  - 8. Compute the 3<sup>rd</sup> row of R by vector product, and enforce orthogonality constraint by SVD
  - 9. Solve Tz and fx using Least Square and SVD, then fy = fx /  $\alpha$



#### **Discussions**

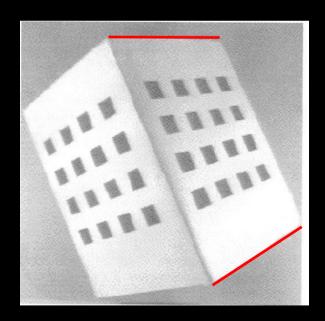
- Questions
  - Can we select an arbitrary image center for solving other parameters?
  - How to find the image center (ox,oy)?
  - How about to include the radial distortion?
  - Why not solve all the parameters once ?
    - How many unknown with ox, oy? --- 20 ??? projection matrix method

$$x = x_{im} - o_x = -f_x \frac{r_{11}X_w + r_{12}Y_w + r_{13}Z_w + T_x}{r_{31}X_w + r_{32}Y_w + r_{33}Z_w + T_z}$$

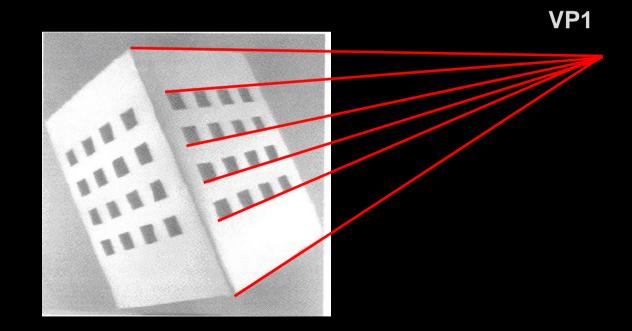
$$y = y_{im} - o_y = -f_y \frac{r_{21}X_w + r_{22}Y_w + r_{23}Z_w + T_y}{r_{31}X_w + r_{32}Y_w + r_{33}Z_w + T_z}$$



- Vanishing points:
  - Due to perspective, all parallel lines in 3D space appear to meet in a point on the image - the vanishing point, which is the common intersection of all the image lines



- Vanishing points:
  - Due to perspective, all parallel lines in 3D space appear to meet in a point on the image the vanishing point, which is the common intersection of all the image lines

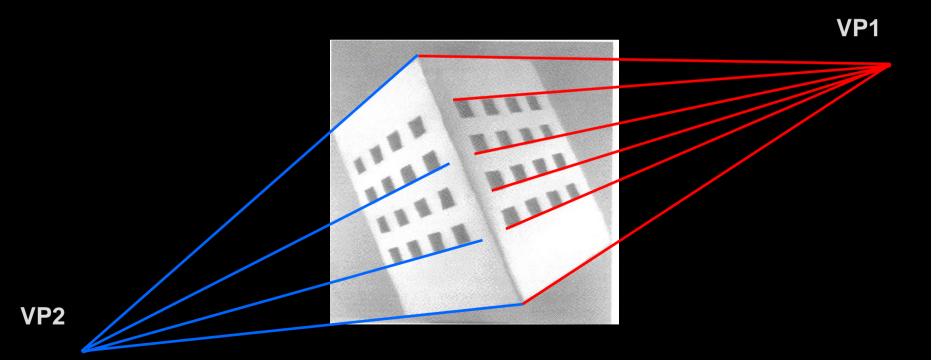


- Vanishing points:
  - Due to perspective, all parallel lines in 3D space appear to meet in a point on the image - the vanishing point, which is the common intersection of all the image lines
- Important property:
  - Vector OV (from the center of projection to the vanishing point) is parallel to the parallel lines

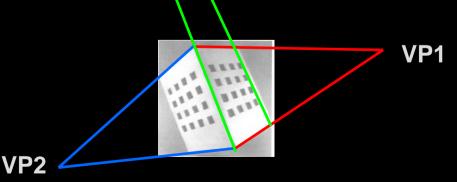
VP1



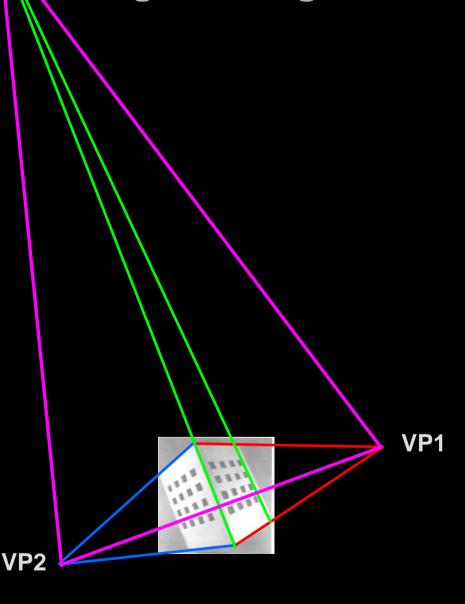
- Vanishing points:
  - Due to perspective, all parallel lines in 3D space appear to meet in a point on the image - the vanishing point, which is the common intersection of all the image lines



- Orthocenter Theorem:
  - Input: three mutually orthogonal sets of parallel lines in an image
  - T: a triangle on the image plane defined by the three vanishing points
  - Image center = orthocenter of triangle T
  - Orthocenter of a triangle is the common intersection of the three altitudes

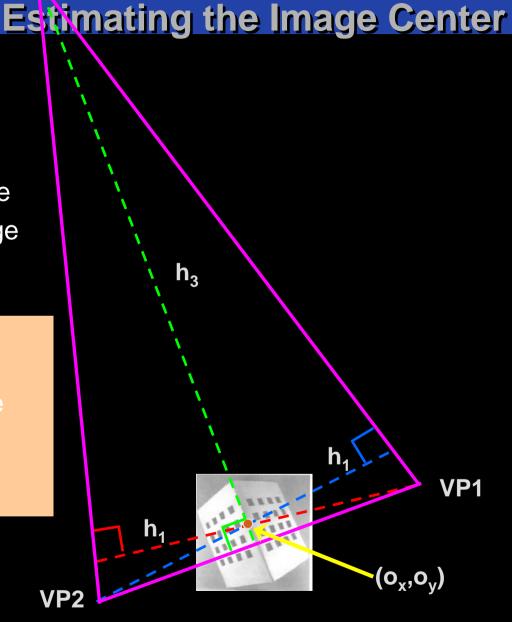


- Orthocenter Theorem:
  - Input: three mutually orthogonal sets of parallel lines in an image
  - T: a triangle on the image plane defined by the three vanishing points
  - Image center = orthocenter of triangle T
  - Orthocenter of a triangle is the common intersection of the three altitudes



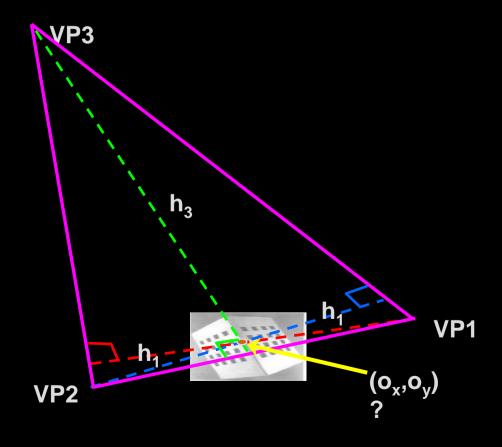
# VP3 Himating the Image Co

- Orthocenter Theorem:
  - Input: three mutually orthogonal sets of parallel lines in an image
  - T: a triangle on the image plane defined by the three vanishing points
  - Image center = orthocenter of triangle T
  - Orthocenter of a triangle is the common intersection of the three altitudes
- Orthocenter Theorem:
  - WHY?





- Assumptions:
  - Known aspect ratio
  - Without lens distortions
- Questions:
  - Can we solve both aspect ratio and the image center?
  - How about with lens distortions?

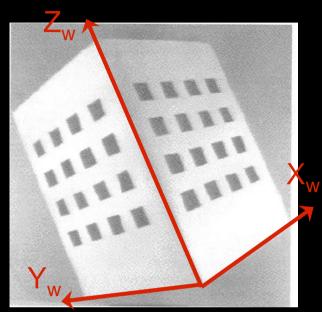


#### **Introduction to**

## Computer ViDirect parameter Calibration Summary

Algorithm (p130-131)

- 0. Estimate image center (and aspect ratio)
- 1. Measure N 3D coordinates (Xi, Yi,Zi)
- 2. Locate their corresponding image (xi,yi) Edge, Corner, Hough
- 3. Build matrix A of a homogeneous system Av = 0
- 4. Compute SVD of A , solution v
- 5. Determine aspect ratio  $\alpha$  and scale  $|\gamma|$
- 6. Recover the first two rows of R and the first two components of T up to a sign
- 7. Determine sign s of  $\gamma$  by checking the projection equation
- 8. Compute the 3<sup>rd</sup> row of R by vector product, and enforce orthogonality constraint by SVD
- 9. Solve Tz and fx using Least Square and SVD, then fy = fx /  $\alpha$



#### Introduction to

## **CompRemaining Issues and Possible Solution**

- Original assumptions:
  - Without lens distortions
  - Known aspect ratio when estimating image center
  - Known image center when estimating others including aspect ratio
- New Assumptions
  - Without lens distortion
  - Aspect ratio is approximately 1, or  $\alpha = fx/fy = 4:3$ ; image center about (M/2, N/2) given a MxN image
- Solution (?)
  - 1. Using  $\alpha = 1$  to find image center (ox, oy)
  - 2. Using the estimated center to find others including  $\alpha$
  - Refine image center using new  $\alpha$ ; if change still significant, go to step 2; otherwise stop



**Projection Matrix Approach** 

# Linear Matrix Equation of perspective projection

#### Projective Space

- Add fourth coordinate
  - $P_w = (X_w, Y_w, Z_w, 1)^T$
- Define (u,v,w)<sup>T</sup> such that
  - U/W =Xim, V/W =Yim

#### 3x4 Matrix E<sub>ext</sub>

- Only extrinsic parameters
- World to camera
- 3x3 Matrix Eint
  - Only intrinsic parameters
  - Camera to frame

$$\mathbf{M}_{ext} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & T_x \\ r_{21} & r_{22} & r_{23} & T_y \\ r_{31} & r_{32} & r_{33} & T_z \end{bmatrix} = \begin{bmatrix} \mathbf{R}_1^T & T_x \\ \mathbf{R}_2^T & T_y \\ \mathbf{R}_3^T & T_z \end{bmatrix}$$

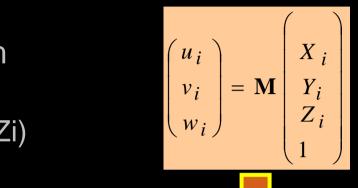
$$\mathbf{M}_{\text{int}} = \begin{bmatrix} -f_x & 0 & o_x \\ 0 & -f_y & o_y \\ 0 & 0 & 1 \end{bmatrix}$$

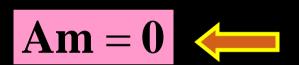
#### ■ Simple Matrix Product! Projective Matrix M= MintMext

- $(Xw,Yw,Zw)^T \rightarrow (xim, yim)^T$
- Linear Transform from projective space to projective plane
- M defined up to a scale factor 11 independent entries

## **Projection Matrix M**

- World Frame Transform
  - Drop "im" and "w"
  - N pairs (xi,yi) <-> (Xi,Yi,Zi)
  - Linear equations of m





$$x_{i} = \frac{u_{i}}{w_{i}} = \frac{m_{11}X_{i} + m_{12}Y_{i} + m_{13}Z_{i} + m_{14}}{m_{31}X_{i} + m_{32}Y_{i} + m_{33}Z_{i} + m_{34}}$$

$$y_{i} = \frac{u_{i}}{w_{i}} = \frac{m_{21}X_{i} + m_{22}Y_{i} + m_{23}Z_{i} + m_{24}}{m_{31}X_{i} + m_{32}Y_{i} + m_{33}Z_{i} + m_{34}}$$

- 3x4 Projection Matrix M
  - Both intrinsic (4) and extrinsic (6) 10 parameters

$$\mathbf{M} = \begin{bmatrix} -f_x r_{11} + o_x r_{31} & -f_x r_{12} + o_x r_{32} & -f_x r_{13} + o_x r_{33} & -f_x T_x + o_x T_z \\ -f_y r_{21} + o_y r_{31} & -f_y r_{22} + o_y r_{32} & -f_y r_{23} + +o_y r_{33} & -f_y T_y + o_y T_z \\ r_{31} & r_{32} & r_{33} & T_z \end{bmatrix}$$



## Computer Step 1: Estimation of projection matrix

- World Frame Transform
  - Drop "im" and "w"

Norld – Frame Transform

• Drop "im" and "w"

• N pairs (xi,yi) <-> (Xi,Yi,Zi)

$$x_i = \frac{u_i}{w_i} = \frac{m_{11}X_i + m_{12}Y_i + m_{13}Z_i + m_{14}}{m_{31}X_i + m_{32}Y_i + m_{33}Z_i + m_{34}}$$
 $y_i = \frac{u_i}{w_i} = \frac{m_{21}X_i + m_{22}Y_i + m_{23}Z_i + m_{24}}{m_{31}X_i + m_{32}Y_i + m_{33}Z_i + m_{34}}$ 

- Linear equations of m
  - 2N equations, 11 independent variables

$$\mathbf{Am} = \mathbf{0}$$

N >=6, SVD => m up to a unknown scale

$$\mathbf{A} = \begin{bmatrix} X_1 & Y_1 & Z_1 & 1 & 0 & 0 & 0 & -x_1 X_1 & -x_1 Y_1 & -x_1 Z_1 & -x_1 \\ 0 & 0 & 0 & X_1 & Y_1 & Z_1 & 1 & -y_1 X_1 & -y_1 Y_1 & -y_1 Y_1 & -y_1 \end{bmatrix}$$

$$\mathbf{m} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} & m_{21} & m_{22} & m_{23} & m_{24} & m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix}^T$$

#### Introduction to

### Computer ViStep 2: Computing camera parameters

- 3x4 Projection Matrix M
  - Both intrinsic and extrinsic

$$\hat{\mathbf{M}} = \begin{bmatrix} \mathbf{q}_1 & q_{41} \\ \mathbf{q}_2 & q_{42} \\ \mathbf{q}_3 & q_{43} \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -f_x r_{11} + o_x r_{31} & -f_x r_{12} + o_x r_{32} & -f_x r_{13} + o_x r_{33} & -f_x T_x + o_x T_z \\ -f_y r_{21} + o_y r_{31} & -f_y r_{22} + o_y r_{32} & -f_y r_{23} + o_y r_{33} & -f_y T_y + o_y T_z \\ r_{31} & r_{32} & r_{33} & T_z \end{bmatrix}$$

- From M<sup>^</sup> to parameters (p134-135)
  - Find scale |γ| by using unit vector R<sub>3</sub><sup>T</sup>
  - Determine  $T_z$  and sign of  $\gamma$  from  $m_{34}$  (i.e.  $q_{43}$ )
  - Obtain R<sub>3</sub><sup>T</sup>
  - Find (Ox, Oy) by dot products of Rows q1. q3, q2.q3, using the orthogonal constraints of R
  - Determine fx and fy from q1 and q2 (Eq. 6.19) Wrong???)
  - All the remainings: R<sub>1</sub><sup>T</sup>, R<sub>2</sub><sup>T</sup>, Tx, Ty
  - Enforce orthognoality on R?



## **Comparisons**

- Direct parameter method and Projection Matrix method
- Properties in Common:
  - Linear system first, Parameter decomposition second
  - Results should be exactly the same
- Differences
  - Number of variables in homogeneous systems
    - Matrix method: All parameters at once, 2N Equations of 12 variables
    - Direct method in three steps: N Equations of 8 variables, N equations of 2 Variables, Image Center maybe more stable
  - Assumptions
    - Matrix method: simpler, and more general; sometime projection matrix is sufficient so no need for parameter decomposition
    - Direct method: Assume known image center in the first two steps,

#### **Computer Vision**

#### **Guidelines for Calibration**

- Pick up a well-known technique or a few
- Design and construct calibration patterns (with known 3D)
- Make sure what parameters you want to find for your camera
- Run algorithms on ideal simulated data
  - You can either use the data of the real calibration pattern or using computer generated data
  - Define a virtual camera with known intrinsic and extrinsic parameters
  - Generate 2D points from the 3D data using the virtual camera
  - Run algorithms on the 2D-3D data set
- Add noises in the simulated data to test the robustness
- Run algorithms on the real data (images of calibration target)
- If successful, you are all set
- Otherwise:
  - Check how you select the distribution of control points
  - Check the accuracy in 3D and 2D localization
  - Check the robustness of your algorithms again
  - Develop your own algorithms → NEW METHODS?

3D reconstruction using two cameras

# **Stereo Vision**

■Homework #3 online, Due April 13 before midnight